亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Accessory pathway localization with probabilistic density maps generated by a mobile application: Assessment of a full pre‐excitation net‐vector method

QRS波群 概率逻辑 集合(抽象数据类型) 旁道 计算机科学 模式识别(心理学) 医学 人工智能 心脏病学 导管消融 心房颤动 程序设计语言
作者
Marek Jastrzębski,Kamil Fijorek,Piotr Futyma,Michał Orczykowski,Maciej Pitak,Łukasz Zarębski,Piotr Sajdak,Sebastian Góreczny,Łukasz Szumowski,Marek Rajzer,Paweł Moskal
出处
期刊:Journal of Cardiovascular Electrophysiology [Wiley]
卷期号:35 (6): 1083-1094 被引量:1
标识
DOI:10.1111/jce.16252
摘要

Abstract Introduction Precise electrocardiographic localization of accessory pathways (AP) can be challenging. Seminal AP localization studies were limited by complexity of algorithms and sample size. We aimed to create a nonalgorithmic method for AP localization based on color‐coded maps of AP distribution generated by a web‐based application. Methods APs were categorized into 19 regions/types based on invasive electrophysiologic mapping. Preexcited QRS complexes were categorized into 6 types based on polarity and notch/slur. For each QRS type in each lead the distribution of APs was visualized on a gradient map. The principle of common set was used to combine the single lead maps to create the distribution map for AP with any combination of QRS types in several leads. For the validation phase, a separate cohort of APs was obtained. Results A total of 800 patients with overt APs were studied. The application used the exploratory data set of 553 consecutive APs and the corresponding QRS complexes to generate AP localization maps for any possible combination of QRS types in 12 leads. Optimized approach (on average 3 steps) for evaluation of preexcited electrcardiogram was developed. The area of maximum probability of AP localization was pinpointed by providing the QRS type for the subsequent leads. The exploratory data set was validated with the separate cohort of APs ( n = 256); p = .23 for difference in AP distribution. Conclusions In the largest data set of APs to‐date, a novel probabilistic and semi‐automatic approach to electrocardiographic localization of APs was highly predictive for anatomic localization.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Zzddslj完成签到 ,获得积分10
刚刚
酷波er应助怎样不怀念呢采纳,获得10
1秒前
mangle完成签到,获得积分10
8秒前
11秒前
啊啊啊完成签到 ,获得积分10
11秒前
11秒前
如意立果完成签到,获得积分20
12秒前
科研通AI5应助Hosea采纳,获得10
13秒前
roy完成签到,获得积分10
14秒前
14秒前
ALLEYET发布了新的文献求助10
15秒前
科研通AI5应助如意立果采纳,获得10
17秒前
怎样不怀念呢完成签到,获得积分20
20秒前
23秒前
严不言完成签到,获得积分10
26秒前
清秀网络完成签到 ,获得积分10
35秒前
贝贝完成签到,获得积分10
36秒前
39秒前
39秒前
纯情的无色完成签到 ,获得积分10
40秒前
小马甲应助ylky采纳,获得10
41秒前
hehehe发布了新的文献求助10
44秒前
Hosea发布了新的文献求助10
45秒前
miujin完成签到,获得积分10
52秒前
我真的要好好学习完成签到 ,获得积分10
55秒前
DE完成签到 ,获得积分10
59秒前
胡庆余完成签到 ,获得积分10
1分钟前
1分钟前
美丽的友安完成签到,获得积分10
1分钟前
清秀健柏完成签到 ,获得积分10
1分钟前
Ricardo完成签到 ,获得积分10
1分钟前
hehehe完成签到,获得积分10
1分钟前
专注的以松关注了科研通微信公众号
1分钟前
SciGPT应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
CodeCraft应助科研通管家采纳,获得10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
1分钟前
乐正亦寒完成签到 ,获得积分10
1分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516310
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9239912
捐赠科研通 2793645
什么是DOI,文献DOI怎么找? 1533155
邀请新用户注册赠送积分活动 712580
科研通“疑难数据库(出版商)”最低求助积分说明 707384