Damage identification of simple supported bridges under moving loads based on variational mode decomposition and deep learning

简单(哲学) 分解 鉴定(生物学) 模式(计算机接口) 结构工程 计算机科学 人工智能 工程类 人机交互 化学 哲学 植物 有机化学 认识论 生物
作者
Chao Wang,Xiang Pan,Tian-Yu Qi,G. Han,Wei‐Xin Ren
出处
期刊:International Journal of Structural Stability and Dynamics [World Scientific]
标识
DOI:10.1142/s0219455425500658
摘要

Aiming at rapid and economical damage detection of a large number of simple supported bridges, a new structural damage identification method under moving load based on variational mode decomposition (VMD) and deep learning is proposed. Firstly, a moving vehicle is used as an exciting load to invoke structural damage feature and enhance the signal-to-noise ratio, and the structural vertical acceleration response is extracted by a finite element simulating analysis under various damage cases. In order to simulate the influence of noise and expand the samples, Gaussian white noise is added to the extracted data, and then the response signal is decomposed into a series of intrinsic mode functions (IMFs) using VMD, and the optimal IMF component is selected as the damage sample of the structure. Then, a one-dimensional convolutional neural network (CNN) model is built and trained by the various samples of damage. The vibration response of the practical bridge is processed and inputted by the trained CNN model to identify the location of the damage and degree of the structure. Finally, the effectiveness and anti-noise performance of the proposed method are verified through numerical analysis and a simply supported beam bridge model experiment. The results show that the average identification accuracy of the numerical simulations and experimental is 93.4% and 86.8% with 20% Gaussian white noise, respectively. Sensors at different locations have almost the same identification effect for various cases of damage, so it is possible to identify structural damage only using a small amount of accelerometer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
信仰完成签到,获得积分10
2秒前
2秒前
粗暴的平凡完成签到,获得积分10
2秒前
ATREE完成签到,获得积分10
3秒前
wm完成签到,获得积分10
3秒前
3秒前
4秒前
wakeeeeeee完成签到,获得积分10
4秒前
无奈曼云完成签到,获得积分10
5秒前
一颗坏葡萄完成签到,获得积分20
5秒前
6秒前
ZHOU-XY完成签到 ,获得积分10
6秒前
含蓄妖丽发布了新的文献求助10
7秒前
8秒前
执着瓜6完成签到,获得积分10
8秒前
CAE上路到上吊完成签到,获得积分10
9秒前
花花世界完成签到 ,获得积分10
9秒前
9秒前
10秒前
闵靖仇完成签到,获得积分10
10秒前
11秒前
核桃完成签到,获得积分10
11秒前
小蘑菇应助伶俐的高烽采纳,获得10
11秒前
12秒前
12秒前
称心白枫完成签到,获得积分10
12秒前
13秒前
zgy1106完成签到,获得积分10
13秒前
核桃发布了新的文献求助10
14秒前
Pumpkin完成签到,获得积分20
14秒前
cxc完成签到,获得积分10
15秒前
FENGHUI完成签到,获得积分20
15秒前
kkk0921发布了新的文献求助10
17秒前
汉堡包应助尛瞐慶成采纳,获得10
17秒前
17秒前
17秒前
小吴同学来啦完成签到,获得积分10
18秒前
善良鱼哟完成签到,获得积分10
18秒前
小蘑菇应助cxc采纳,获得10
18秒前
19秒前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 800
Mantids of the euro-mediterranean area 700
Plate Tectonics 500
Igneous rocks and processes: a practical guide(第二版) 500
Mantodea of the World: Species Catalog 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3408760
求助须知:如何正确求助?哪些是违规求助? 3012783
关于积分的说明 8855749
捐赠科研通 2700062
什么是DOI,文献DOI怎么找? 1480218
科研通“疑难数据库(出版商)”最低求助积分说明 684244
邀请新用户注册赠送积分活动 678567