Advances in stem cells treatment of diabetic wounds: A bibliometric analysis via CiteSpace

干细胞 医学 中国 祖细胞 糖尿病 中医药 传统医学 内科学 替代医学 病理 生物 地理 内分泌学 遗传学 考古
作者
Ke Ma,Chao Luo,Mindong Du,Qiang Wei,Q. Luo,Li Zheng,Mingde Liao
出处
期刊:Skin Research and Technology [Wiley]
卷期号:30 (4)
标识
DOI:10.1111/srt.13665
摘要

Diabetes is a chronic medical condition that may induce complications such as poor wound healing. Stem cell therapies have shown promise in treating diabetic wounds with pre-clinical and clinical studies. However, little bibliometric analysis has been carried out on stem cells in the treatment of diabetic wounds. In this study, we retrieved relevant papers published from January 1, 2003, to December 31, 2023, from Chinese and English databases. CiteSpace software was used to analyze the authors, institutions, and keywords by standard bibliometric indicators. Our analysis findings indicated that publications on stem cells in the treatment of diabetic wounds kept increasing. The most prolific author was Qian Cai (n = 7) and Mohammad Bayat (n = 16) in Chinese and English databases, respectively. Institutions distribution analysis showed that Chinese institutions conducted most publications, and the most prolific institution was the Chinese People's Liberation Army General Hospital (n = 9) and Shahid Beheshti University of Medical Sciences (n = 17) in Chinese and English databases, respectively. The highest centrality keyword in Chinese and English databases was "wound healing" (0.54) and "in vitro" (0.13), respectively. There were 8 and 11 efficient and convincing keyword clusters produced by a log-likelihood ratio in the Chinese and English databases, respectively. The strongest burst keyword was "exosome" (strength 3.57) and "endothelial progenitor cells" (strength 7.87) in the Chinese and English databases, respectively. These findings indicated a direction for future therapies and research on stem cells in the treatment of diabetic wounds.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脑洞疼应助bc采纳,获得10
刚刚
NEMO发布了新的文献求助10
刚刚
李健应助mammoth采纳,获得20
刚刚
熊boy发布了新的文献求助10
刚刚
天真思雁发布了新的文献求助10
刚刚
1秒前
情怀应助蔡蔡不菜菜采纳,获得10
1秒前
shouyu29应助MADKAI采纳,获得10
2秒前
CipherSage应助MADKAI采纳,获得10
2秒前
乐乐应助MADKAI采纳,获得10
2秒前
ChangSZ应助MADKAI采纳,获得10
2秒前
乐乐应助MADKAI采纳,获得10
2秒前
小飞七应助MADKAI采纳,获得10
2秒前
Akim应助MADKAI采纳,获得20
2秒前
科研通AI5应助MADKAI采纳,获得10
2秒前
充电宝应助MADKAI采纳,获得10
2秒前
buno应助MADKAI采纳,获得10
2秒前
2秒前
小唐完成签到 ,获得积分0
4秒前
思源应助年轻的咖啡豆采纳,获得10
4秒前
6秒前
科研通AI5应助junc采纳,获得20
6秒前
绿洲完成签到,获得积分10
7秒前
7秒前
yf_zhu发布了新的文献求助10
7秒前
正直亦旋发布了新的文献求助10
7秒前
8秒前
华仔应助招财不肥采纳,获得10
8秒前
健康的梦曼完成签到 ,获得积分10
8秒前
最最最发布了新的文献求助10
8秒前
科研是什么鬼完成签到,获得积分10
10秒前
10秒前
11秒前
欢喜素阴完成签到 ,获得积分10
12秒前
yirenli完成签到,获得积分10
12秒前
希望天下0贩的0应助DAYTOY采纳,获得10
12秒前
狮子座完成签到,获得积分10
12秒前
爆米花应助润润轩轩采纳,获得10
12秒前
14秒前
熊boy完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762