材料科学
丝绸
声发射
复合材料
声音(地理)
图层(电子)
声学
物理
作者
Grace Yang,Jinuan Lin,Henry Cheung,Guanchun Rui,Yongyi Zhao,Latika Balachander,Taigyu Joo,Hyun‐Hee Lee,Zachary P. Smith,Lei Zhu,Chu Ma,Yoel Fink
标识
DOI:10.1002/adma.202313328
摘要
Abstract Whether intentionally generating acoustic waves or attempting to mitigate unwanted noise, sound control is an area of challenge and opportunity. This study investigates traditional fabrics as emitters and suppressors of sound. When attached to a single strand of a piezoelectric fiber actuator, a silk fabric emits up to 70 dB of sound. Despite the complex fabric structure, vibrometer measurements reveal behavior reminiscent of a classical thin plate. Fabric pore size relative to the viscous boundary layer thickness is found—through comparative fabric analysis—to influence acoustic‐emission efficiency. Sound suppression is demonstrated using two distinct mechanisms. In the first, direct acoustic interference is shown to reduce sound by up to 37 dB. The second relies on pacifying the fabric vibrations by the piezoelectric fiber, reducing the amplitude of vibration waves by 95% and attenuating the transmitted sound by up to 75%. Interestingly, this vibration‐mediated suppression in principle reduces sound in an unlimited volume. It also allows the acoustic reflectivity of the fabric to be dynamically controlled, increasing by up to 68%. The sound emission and suppression efficiency of a 130 µm silk fabric presents opportunities for sound control in a variety of applications ranging from apparel to transportation to architecture.
科研通智能强力驱动
Strongly Powered by AbleSci AI