Computer-assisted design of CGC catalysts for ethylene/1-octene copolymerization: A combined DFT and artificial neural network approach

聚烯烃 共聚物 1-辛烯 位阻效应 催化作用 材料科学 辛烯 乙烯 茂金属 人工神经网络 环戊二烯基络合物 密度泛函理论 后茂金属催化剂 电子效应 弹性体 聚合 计算化学 化学 计算机科学 有机化学 聚合物 纳米技术 复合材料 人工智能 图层(电子)
作者
Shijia Wang,Xiutai Zhuo,Haonan Fan,Chengang Cao,Tao Jiang,Bing Yan
出处
期刊:Polymer [Elsevier BV]
卷期号:300: 126997-126997
标识
DOI:10.1016/j.polymer.2024.126997
摘要

High temperature solution polymerization of ethylene/1-octene is the main means to produce polyolefin elastomer (POE), one of the most important polyolefin materials, and the metallocene catalysts with high-efficiency are the key to achieve POE production. However, there remains a deficiency in a universal approach for creating catalysts for ethylene/1-octene copolymerization. In this document, we outlined a method for designing catalysts for ethylene/1-octene copolymerization by combining density functional theory (DFT) with an artificial neural network (ANN) was proposed. By optimizing the structure and computing electronically a sequence of constrained geometry catalysts (CGC) by DFT, descriptors related to steric and electronic descriptors were gathered to create the dataset. After ANN training, an ANN-based model using for predicting catalyst activity with high R2 value was optimized, and a class of novel highly efficient CGC have been successfully designed. Furthermore, an exploration was conducted into how the structure of catalysts correlates with their performance. The electronic properties of the catalysts were found to have more significantly effect on the catalytic performance than the steric properties. In addition, the effect of the β-site substitution of the cyclopentadienyl group on the catalytic activity of predicted CGC was studied and discussed. The groups with ring-structure, especially with conjugate system, were proved to possess a good promoting effect on the catalytic activity.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助tu豆采纳,获得10
刚刚
Bon H完成签到,获得积分10
1秒前
深情飞丹完成签到 ,获得积分10
1秒前
1秒前
1秒前
m1完成签到,获得积分10
2秒前
3秒前
crde完成签到 ,获得积分10
3秒前
科研通AI5应助忧虑的花卷采纳,获得10
3秒前
守夜人完成签到,获得积分10
3秒前
今后应助壮观以松采纳,获得10
4秒前
4秒前
大虾发布了新的文献求助30
4秒前
usinme发布了新的文献求助10
5秒前
健康的母鸡完成签到,获得积分20
5秒前
5秒前
科研通AI2S应助Smiley采纳,获得10
6秒前
7秒前
z11完成签到,获得积分10
8秒前
十四发布了新的文献求助30
9秒前
隐形曼青应助落雨冥采纳,获得10
10秒前
Xiaoxiao应助黎笙采纳,获得10
10秒前
11秒前
h多士完成签到,获得积分10
12秒前
12秒前
yongji发布了新的文献求助10
12秒前
充电宝应助克林沙星采纳,获得10
14秒前
15秒前
火星上的小飞龙完成签到,获得积分10
15秒前
15秒前
调皮雨灵发布了新的文献求助10
16秒前
18秒前
十四完成签到,获得积分10
19秒前
Estelle完成签到,获得积分20
21秒前
壮观以松发布了新的文献求助10
21秒前
学术通zzz发布了新的文献求助10
21秒前
ANANAN应助aka毕业顺利采纳,获得10
22秒前
欣喜无色发布了新的文献求助30
22秒前
23秒前
执着千筹完成签到,获得积分10
24秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3745698
求助须知:如何正确求助?哪些是违规求助? 3288663
关于积分的说明 10060052
捐赠科研通 3004935
什么是DOI,文献DOI怎么找? 1649958
邀请新用户注册赠送积分活动 785632
科研通“疑难数据库(出版商)”最低求助积分说明 751204