Carbon quantum dots/BiVO4 S-scheme piezo-photocatalysts improved carrier separation for efficient antibiotic removal

异质结 X射线光电子能谱 光催化 碳纤维 肖特基势垒 压电 材料科学 降级(电信) 光电子学 化学工程 载流子 量子效率 纳米技术 化学 催化作用 复合材料 电子工程 有机化学 复合数 二极管 工程类
作者
Ming-Song Lv,Shihan Wang,Haifeng Shi
出处
期刊:Journal of Materials Science & Technology [Elsevier BV]
卷期号:201: 21-31 被引量:34
标识
DOI:10.1016/j.jmst.2024.02.073
摘要

Reasonable design of an efficient S−scheme photocatalyst remains an ongoing challenge due to the limitation of interfacial charge separation efficiency. Herein, CQDs/BiVO4 S−scheme heterojunction with Bi−O−C bond was synthesized by introducing carbon quantum dots (CQDs) growth on BiVO4 piezo−photocatalyst and absorbed visible light up to 750 nm. Under light + ultrasonic conditions, the reaction rate constant (k) of BVO/C−0.10 reached 0.0517 min−1 on tetracycline (TC) degradation, which was 2.24 and 4.04 times higher than those of BiVO4 and CQDs, respectively. The enhanced performance was attributed to the improved efficiency of the photogenerated carrier separation, originating from the combination of piezoelectric effect and S−scheme heterojunction with Bi−O−C bond. The Bi−O−C bond at the CQDs (3–8 nm) and BiVO4 interfaces connected the two semiconductor materials and provided an atomic−level interface channel for carrier migration. The piezoelectric properties of the composites were investigated by piezo−response force microscopy (PFM). Based on Mott−Schottky curves, X−ray photoelectron spectroscopy (XPS), and scavenging experiments, the possible piezo−photocatalytic mechanism was proposed in combination with the band structures and characteristics of CQDs and BiVO4. This work furnishes unique insights into developing efficient S−scheme piezo−photocatalysts for purifying wastewater.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小康完成签到,获得积分10
1秒前
4秒前
NexusExplorer应助XYCH采纳,获得10
5秒前
xxx发布了新的文献求助10
7秒前
8秒前
曲奇发布了新的文献求助10
8秒前
小迪迦奥特曼完成签到,获得积分10
9秒前
小康发布了新的文献求助10
9秒前
10秒前
心心哈完成签到 ,获得积分10
10秒前
deswin完成签到 ,获得积分10
11秒前
11秒前
13秒前
水色完成签到 ,获得积分10
14秒前
fmy发布了新的文献求助10
16秒前
16秒前
Shine完成签到 ,获得积分10
17秒前
CipherSage应助曲奇采纳,获得10
18秒前
ZZZ发布了新的文献求助10
19秒前
autumn发布了新的文献求助20
20秒前
量子星尘发布了新的文献求助10
22秒前
稳重代容发布了新的文献求助10
23秒前
24秒前
25秒前
26秒前
fmy完成签到,获得积分10
26秒前
最佳关注了科研通微信公众号
27秒前
29秒前
CodeCraft应助稳重代容采纳,获得10
31秒前
31秒前
Akim应助坦率的高烽采纳,获得10
32秒前
32秒前
一一完成签到,获得积分10
32秒前
乐乐应助超帅凡阳采纳,获得10
33秒前
34秒前
34秒前
荣耀发布了新的文献求助10
35秒前
复杂的之卉关注了科研通微信公众号
36秒前
zhang-leo发布了新的文献求助10
37秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979628
求助须知:如何正确求助?哪些是违规求助? 3523569
关于积分的说明 11218108
捐赠科研通 3261093
什么是DOI,文献DOI怎么找? 1800402
邀请新用户注册赠送积分活动 879099
科研通“疑难数据库(出版商)”最低求助积分说明 807163