Frequency-Domain Robust PCA for Real-Time Monitoring of HIFU Treatment

高强度聚焦超声 计算机科学 成像体模 超声波 医学影像学 人工智能 生物医学工程 计算机视觉 放射科 医学
作者
Kun Yang,Qiang Li,Jiahong Xu,Meng-Xing Tang,Zhibiao Wang,Po‐Hsiang Tsui,Xiaowei Zhou
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:43 (8): 3001-3012
标识
DOI:10.1109/tmi.2024.3385408
摘要

High intensity focused ultrasound (HIFU) is a thriving non-invasive technique for thermal ablation of tumors, but significant challenges remain in its real-time monitoring with medical imaging. Ultrasound imaging is one of the main imaging modalities for monitoring HIFU surgery in organs other than the brain, mainly due to its good temporal resolution. However, strong acoustic interference from HIFU irradiation severely obscures the B-mode images and compromises the monitoring. To address this problem, we proposed a frequency-domain robust principal component analysis (FRPCA) method to separate the HIFU interference from the contaminated B-mode images. Ex-vivo and in-vivo experiments were conducted to validate the proposed method based on a clinical HIFU therapy system combined with an ultrasound imaging platform. The performance of the FRPCA method was compared with the conventional notch filtering method. Results demonstrated that the FRPCA method can effectively remove HIFU interference from the B-mode images, which allowed HIFU-induced grayscale changes at the focal region to be recovered. Compared to notch-filtered images, the FRPCA-processed images showed an 8.9% improvement in terms of the structural similarity (SSIM) index to the uncontaminated B-mode images. These findings demonstrate that the FRPCA method presents an effective signal processing framework to remove the strong HIFU acoustic interference, obtains better dynamic visualization in monitoring the HIFU irradiation process, and offers great potential to improve the efficacy and safety of HIFU treatment and other focused ultrasound related applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ppp完成签到,获得积分10
刚刚
唠叨的白萱完成签到,获得积分10
1秒前
傲娇的凡旋完成签到,获得积分10
1秒前
fusheng完成签到 ,获得积分10
2秒前
2秒前
兔子完成签到,获得积分20
3秒前
Zzzzzzzzzzz完成签到,获得积分20
3秒前
3秒前
4秒前
5秒前
6秒前
谭谨川发布了新的文献求助10
6秒前
cheung完成签到,获得积分10
6秒前
乌日汗完成签到,获得积分10
7秒前
7秒前
7秒前
公茂源完成签到 ,获得积分10
8秒前
共享精神应助spurs17采纳,获得30
9秒前
BONBON发布了新的文献求助10
10秒前
liuqian发布了新的文献求助10
10秒前
浮生完成签到 ,获得积分10
10秒前
奔跑的青霉素完成签到 ,获得积分10
10秒前
linxue发布了新的文献求助10
10秒前
科研通AI5应助Annie采纳,获得10
10秒前
11秒前
执着发布了新的文献求助20
11秒前
原鑫完成签到,获得积分10
11秒前
寒涛先生完成签到,获得积分20
12秒前
13秒前
科研通AI5应助呆萌的元枫采纳,获得30
13秒前
13秒前
gzsy发布了新的文献求助10
13秒前
15秒前
17秒前
17秒前
哄不好的南完成签到,获得积分10
17秒前
makus完成签到,获得积分10
17秒前
西西歪完成签到,获得积分10
19秒前
19秒前
深情安青应助BONBON采纳,获得10
19秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527928
求助须知:如何正确求助?哪些是违规求助? 3108040
关于积分的说明 9287614
捐赠科研通 2805836
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716904
科研通“疑难数据库(出版商)”最低求助积分说明 709808