Advancing musculoskeletal tumor diagnosis: Automated segmentation and predictive classification using deep learning and radiomics

无线电技术 人工智能 计算机科学 磁共振成像 分割 机器学习 医学 可解释性 图像分割 分级(工程) 模式识别(心理学) 放射科 工程类 土木工程
作者
Shuo Wang,Man Sun,Jinglai Sun,Qingsong Wang,Guangpu Wang,Xiaolin Wang,Xianghong Meng,Zhi Wang,Hui Yu
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:175: 108502-108502 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.108502
摘要

Musculoskeletal (MSK) tumors, given their high mortality rate and heterogeneity, necessitate precise examination and diagnosis to guide clinical treatment effectively. Magnetic resonance imaging (MRI) is pivotal in detecting MSK tumors, as it offers exceptional image contrast between bone and soft tissue. This study aims to enhance the speed of detection and the diagnostic accuracy of MSK tumors through automated segmentation and grading utilizing MRI. The research included 170 patients (mean age, 58 years ± 12 (standard deviation), 84 men) with MSK lesions, who underwent MRI scans from April 2021 to May 2023. We proposed a deep learning (DL) segmentation model MSAPN based on multi-scale attention and pixel-level reconstruction, and compared it with existing algorithms. Using MSAPN-segmented lesions to extract their radiomic features for the benign and malignant classification of tumors. Compared to the most advanced segmentation algorithms, MSAPN demonstrates better performance. The Dice similarity coefficients (DSC) are 0.871 and 0.815 in the testing set and independent validation set, respectively. The radiomics model for classifying benign and malignant lesions achieves an accuracy of 0.890. Moreover, there is no statistically significant difference between the radiomics model based on manual segmentation and MSAPN segmentation. This research contributes to the advancement of MSK tumor diagnosis through automated segmentation and predictive classification. The integration of DL algorithms and radiomics shows promising results, and the visualization analysis of feature maps enhances clinical interpretability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
blackbody完成签到,获得积分10
1秒前
1秒前
Amanda完成签到,获得积分10
1秒前
兔兔兔兔t完成签到,获得积分10
1秒前
jike完成签到 ,获得积分10
1秒前
粒粒完成签到,获得积分10
2秒前
CodeCraft应助XHGG采纳,获得10
2秒前
2秒前
2秒前
不吃橘子完成签到,获得积分10
2秒前
painx完成签到,获得积分10
3秒前
我将以疾风形态出击完成签到,获得积分10
3秒前
3秒前
irenelijiaaa发布了新的文献求助10
3秒前
Tina完成签到,获得积分10
3秒前
3秒前
3秒前
Hollen完成签到 ,获得积分10
3秒前
马里奥完成签到,获得积分10
3秒前
3秒前
4秒前
zt发布了新的文献求助10
4秒前
舒心迎蕾发布了新的文献求助20
4秒前
4秒前
慕青应助帅气蓝采纳,获得10
4秒前
天天快乐应助小马采纳,获得10
5秒前
5秒前
现代的秋完成签到,获得积分10
5秒前
zhaoxi完成签到,获得积分10
5秒前
英吉利25发布了新的文献求助10
6秒前
水月完成签到,获得积分10
6秒前
Gurlstrian完成签到,获得积分10
6秒前
Migrol完成签到,获得积分10
6秒前
悄悄完成签到 ,获得积分10
6秒前
miao完成签到,获得积分10
7秒前
研友_VZG7GZ应助花痴的谷雪采纳,获得10
7秒前
sclai完成签到,获得积分10
7秒前
苹果河马完成签到,获得积分10
7秒前
哈哈发布了新的文献求助10
7秒前
江中发布了新的文献求助10
7秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5585217
求助须知:如何正确求助?哪些是违规求助? 4669042
关于积分的说明 14774554
捐赠科研通 4617220
什么是DOI,文献DOI怎么找? 2530423
邀请新用户注册赠送积分活动 1499182
关于科研通互助平台的介绍 1467659