计算机科学
强化学习
云计算
调度(生产过程)
人工智能
分布式计算
数学优化
操作系统
数学
作者
Guangyao Zhou,Wenhong Tian,Rajkumar Buyya,Ruini Xue,Song Liu
标识
DOI:10.1007/s10462-024-10756-9
摘要
Abstract With the acceleration of the Internet in Web 2.0, Cloud computing is a new paradigm to offer dynamic, reliable and elastic computing services. Efficient scheduling of resources or optimal allocation of requests is one of the prominent issues in emerging Cloud computing. Considering the growing complexity of Cloud computing, future Cloud systems will require more effective resource management methods. In some complex scenarios with difficulties in directly evaluating the performance of scheduling solutions, classic algorithms (such as heuristics and meta-heuristics) will fail to obtain an effective scheme. Deep reinforcement learning (DRL) is a novel method to solve scheduling problems. Due to the combination of deep learning and reinforcement learning (RL), DRL has achieved considerable performance in current studies. To focus on this direction and analyze the application prospect of DRL in Cloud scheduling, we provide a comprehensive review for DRL-based methods in resource scheduling of Cloud computing. Through the theoretical formulation of scheduling and analysis of RL frameworks, we discuss the advantages of DRL-based methods in Cloud scheduling. We also highlight different challenges and discuss the future directions existing in the DRL-based Cloud scheduling.
科研通智能强力驱动
Strongly Powered by AbleSci AI