Toward Intelligent Lightweight and Efficient UAV Identification With RF Fingerprinting

计算机科学 软件部署 鉴定(生物学) 计算复杂性理论 灵活性(工程) 特征提取 计算 实时计算 卷积(计算机科学) 无人机 人工智能 数据挖掘 算法 人工神经网络 植物 生物 遗传学 统计 操作系统 数学
作者
Zhenxin Cai,Yu Wang,Qi Jiang,Guan Gui,Jin Sha
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 26329-26339 被引量:3
标识
DOI:10.1109/jiot.2024.3395466
摘要

The inherent flexibility of small unmanned aerial vehicles (UAVs) enables their deployment across various emerging markets. Unauthenticated UAVs pose a significant threat if they intrude into aviation-sensitive areas. To address this issue, deep learning (DL)-based radio frequency fingerprint identification (RFFI) has been developed as a promising approach for identifying illegal UAVs. However, these commonly used DL-based methods demand high computation and storage requirements, which are not suitable for the deployment of RFFI. In this paper, we propose an efficient and low-complexity RFFI method for UAV identification. Specifically, we design a lightweight backbone network consisting of lightweight multi-scale convolution (LMSC) blocks that can significantly reduce the model size and enhance the feature extraction ability. The simulation results indicate that our proposed UAV RFFI method outperforms other state-of-the-art and popular DL-based RFFI methods in terms of both identification performance and complexity. The identification accuracy surpasses that of all other methods at low signal-to-noise ratios (SNRs) and achieves nearly 100% accuracy at high SNRs. To further enhance model efficiency, we employ data truncation in our experimental simulations, demonstrating that a sample length of 2000 is sufficient to retain high identification performance. Additionally, we incorporate the Mixup regularization strategy, which improves accuracy without increasing the complexity, especially as sample length decreases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
2秒前
alexyusheng完成签到,获得积分10
3秒前
CipherSage应助jhj采纳,获得10
3秒前
4秒前
贾明灵发布了新的文献求助10
4秒前
朝朝完成签到,获得积分10
4秒前
4秒前
左安彤完成签到,获得积分10
5秒前
打打应助威武的泽洋采纳,获得30
5秒前
Markus发布了新的文献求助30
8秒前
初雪完成签到,获得积分10
8秒前
汉堡包应助蓝色天空采纳,获得10
8秒前
科研通AI6应助sure采纳,获得10
9秒前
ZeKaWa应助tp040900采纳,获得20
9秒前
天天快乐应助无端采纳,获得10
10秒前
张小北完成签到,获得积分10
10秒前
lj发布了新的文献求助10
11秒前
11秒前
英姑应助jitanxiang采纳,获得10
12秒前
萧湘完成签到,获得积分10
12秒前
13秒前
13秒前
13秒前
朱厚璁发布了新的文献求助10
16秒前
zhulinling完成签到,获得积分10
16秒前
科研通AI2S应助zqm采纳,获得10
16秒前
16秒前
啊哈完成签到 ,获得积分10
18秒前
19秒前
20秒前
20秒前
20秒前
量子星尘发布了新的文献求助150
20秒前
YElv完成签到,获得积分10
22秒前
jiay发布了新的文献求助30
23秒前
上官若男应助艾克j采纳,获得10
24秒前
QWE发布了新的文献求助10
24秒前
善学以致用应助朱厚璁采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Selected papers II : with commentaries 1000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5062637
求助须知:如何正确求助?哪些是违规求助? 4286396
关于积分的说明 13356994
捐赠科研通 4104212
什么是DOI,文献DOI怎么找? 2247379
邀请新用户注册赠送积分活动 1252944
关于科研通互助平台的介绍 1183868