期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers] 日期:2024-04-30卷期号:11 (15): 26329-26339被引量:3
标识
DOI:10.1109/jiot.2024.3395466
摘要
The inherent flexibility of small unmanned aerial vehicles (UAVs) enables their deployment across various emerging markets. Unauthenticated UAVs pose a significant threat if they intrude into aviation-sensitive areas. To address this issue, deep learning (DL)-based radio frequency fingerprint identification (RFFI) has been developed as a promising approach for identifying illegal UAVs. However, these commonly used DL-based methods demand high computation and storage requirements, which are not suitable for the deployment of RFFI. In this paper, we propose an efficient and low-complexity RFFI method for UAV identification. Specifically, we design a lightweight backbone network consisting of lightweight multi-scale convolution (LMSC) blocks that can significantly reduce the model size and enhance the feature extraction ability. The simulation results indicate that our proposed UAV RFFI method outperforms other state-of-the-art and popular DL-based RFFI methods in terms of both identification performance and complexity. The identification accuracy surpasses that of all other methods at low signal-to-noise ratios (SNRs) and achieves nearly 100% accuracy at high SNRs. To further enhance model efficiency, we employ data truncation in our experimental simulations, demonstrating that a sample length of 2000 is sufficient to retain high identification performance. Additionally, we incorporate the Mixup regularization strategy, which improves accuracy without increasing the complexity, especially as sample length decreases.