亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Toward Intelligent Lightweight and Efficient UAV Identification With RF Fingerprinting

计算机科学 软件部署 鉴定(生物学) 计算复杂性理论 灵活性(工程) 特征提取 计算 实时计算 卷积(计算机科学) 无人机 人工智能 数据挖掘 算法 人工神经网络 植物 生物 遗传学 统计 操作系统 数学
作者
Zhenxin Cai,Yu Wang,Qi Jiang,Guan Gui,Jin Sha
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 26329-26339 被引量:27
标识
DOI:10.1109/jiot.2024.3395466
摘要

The inherent flexibility of small unmanned aerial vehicles (UAVs) enables their deployment across various emerging markets. Unauthenticated UAVs pose a significant threat if they intrude into aviation-sensitive areas. To address this issue, deep learning (DL)-based radio frequency fingerprint identification (RFFI) has been developed as a promising approach for identifying illegal UAVs. However, these commonly used DL-based methods demand high computation and storage requirements, which are not suitable for the deployment of RFFI. In this paper, we propose an efficient and low-complexity RFFI method for UAV identification. Specifically, we design a lightweight backbone network consisting of lightweight multi-scale convolution (LMSC) blocks that can significantly reduce the model size and enhance the feature extraction ability. The simulation results indicate that our proposed UAV RFFI method outperforms other state-of-the-art and popular DL-based RFFI methods in terms of both identification performance and complexity. The identification accuracy surpasses that of all other methods at low signal-to-noise ratios (SNRs) and achieves nearly 100% accuracy at high SNRs. To further enhance model efficiency, we employ data truncation in our experimental simulations, demonstrating that a sample length of 2000 is sufficient to retain high identification performance. Additionally, we incorporate the Mixup regularization strategy, which improves accuracy without increasing the complexity, especially as sample length decreases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笑傲完成签到,获得积分10
19秒前
开心每一天完成签到 ,获得积分10
50秒前
房天川完成签到 ,获得积分10
51秒前
量子星尘发布了新的文献求助10
1分钟前
1分钟前
1分钟前
杨泽宇发布了新的文献求助10
1分钟前
日常K人完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
SnowElf完成签到,获得积分10
2分钟前
2分钟前
hongye发布了新的文献求助30
2分钟前
SnowElf发布了新的文献求助10
2分钟前
2分钟前
2分钟前
orangel发布了新的文献求助10
2分钟前
hongye完成签到 ,获得积分10
2分钟前
小粒橙完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
HaoZhang发布了新的文献求助10
3分钟前
HaoZhang完成签到,获得积分20
3分钟前
尼古拉斯铁柱完成签到 ,获得积分10
3分钟前
矜持完成签到 ,获得积分10
3分钟前
Mic应助笑点低的斑马采纳,获得10
4分钟前
lixuebin发布了新的文献求助10
4分钟前
4分钟前
小白发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
6分钟前
嗨嗨嗨完成签到 ,获得积分10
6分钟前
胖小羊完成签到 ,获得积分10
7分钟前
7分钟前
桥西小河完成签到 ,获得积分10
8分钟前
脑洞疼应助怕孤独的怀莲采纳,获得30
8分钟前
SUNny发布了新的文献求助10
8分钟前
有米爱吃又桂卷完成签到,获得积分10
9分钟前
量子星尘发布了新的文献求助10
9分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5664503
求助须知:如何正确求助?哪些是违规求助? 4863764
关于积分的说明 15107879
捐赠科研通 4823133
什么是DOI,文献DOI怎么找? 2581988
邀请新用户注册赠送积分活动 1536081
关于科研通互助平台的介绍 1494505