Toward Intelligent Lightweight and Efficient UAV Identification With RF Fingerprinting

计算机科学 软件部署 鉴定(生物学) 计算复杂性理论 灵活性(工程) 特征提取 计算 实时计算 卷积(计算机科学) 无人机 人工智能 数据挖掘 算法 人工神经网络 统计 遗传学 数学 操作系统 植物 生物
作者
Zhenxin Cai,Yu Wang,Qi Jiang,Guan Gui,Jin Sha
出处
期刊:IEEE Internet of Things Journal [Institute of Electrical and Electronics Engineers]
卷期号:11 (15): 26329-26339 被引量:3
标识
DOI:10.1109/jiot.2024.3395466
摘要

The inherent flexibility of small unmanned aerial vehicles (UAVs) enables their deployment across various emerging markets. Unauthenticated UAVs pose a significant threat if they intrude into aviation-sensitive areas. To address this issue, deep learning (DL)-based radio frequency fingerprint identification (RFFI) has been developed as a promising approach for identifying illegal UAVs. However, these commonly used DL-based methods demand high computation and storage requirements, which are not suitable for the deployment of RFFI. In this paper, we propose an efficient and low-complexity RFFI method for UAV identification. Specifically, we design a lightweight backbone network consisting of lightweight multi-scale convolution (LMSC) blocks that can significantly reduce the model size and enhance the feature extraction ability. The simulation results indicate that our proposed UAV RFFI method outperforms other state-of-the-art and popular DL-based RFFI methods in terms of both identification performance and complexity. The identification accuracy surpasses that of all other methods at low signal-to-noise ratios (SNRs) and achieves nearly 100% accuracy at high SNRs. To further enhance model efficiency, we employ data truncation in our experimental simulations, demonstrating that a sample length of 2000 is sufficient to retain high identification performance. Additionally, we incorporate the Mixup regularization strategy, which improves accuracy without increasing the complexity, especially as sample length decreases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
FashionBoy应助活泼的便当采纳,获得10
刚刚
大豪子完成签到,获得积分10
2秒前
2秒前
支凤妖发布了新的文献求助10
3秒前
4秒前
Xieyusen完成签到,获得积分10
5秒前
柚子发布了新的文献求助10
5秒前
解兴庚完成签到,获得积分10
6秒前
研友_LMyozL发布了新的文献求助10
7秒前
wdewdfe完成签到 ,获得积分10
7秒前
852应助影子采纳,获得10
11秒前
11秒前
搜集达人应助端木永乐采纳,获得10
14秒前
samantha817完成签到,获得积分10
16秒前
Sniu发布了新的文献求助20
16秒前
16秒前
18秒前
乐乐应助邢文瑞采纳,获得10
20秒前
JUST发布了新的文献求助10
21秒前
dypdyp应助ycg采纳,获得10
21秒前
22秒前
裸素发布了新的文献求助20
24秒前
雪山飞龙发布了新的文献求助10
24秒前
1111完成签到,获得积分10
26秒前
冷静凡天应助穆亦擎采纳,获得10
26秒前
27秒前
哈哈哈完成签到,获得积分20
29秒前
怕黑的凌柏完成签到,获得积分10
34秒前
JamesPei应助lv采纳,获得10
35秒前
1111发布了新的文献求助10
36秒前
orixero应助路宝采纳,获得10
36秒前
38秒前
椰青冰萃发布了新的文献求助10
40秒前
科研小李发布了新的文献求助10
41秒前
徐长卿完成签到 ,获得积分10
42秒前
44秒前
46秒前
48秒前
Coconut发布了新的文献求助20
49秒前
50秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3962866
求助须知:如何正确求助?哪些是违规求助? 3508797
关于积分的说明 11143246
捐赠科研通 3241711
什么是DOI,文献DOI怎么找? 1791651
邀请新用户注册赠送积分活动 873044
科研通“疑难数据库(出版商)”最低求助积分说明 803579