Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models

概念模型 计算机科学 地表径流 过程(计算) 极限学习机 环境科学 水文学(农业) 机器学习 地质学 生态学 人工神经网络 岩土工程 生物 数据库 操作系统
作者
Cenk Sezen,Mojca Šraj
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:926: 171684-171684 被引量:5
标识
DOI:10.1016/j.scitotenv.2024.171684
摘要

Hydrological modelling can be complex in nonhomogeneous catchments with diverse geological, climatic, and topographic conditions. In this study, an integrated conceptual model including the snow module with machine learning modelling approaches was implemented for daily rainfall-runoff modelling in mostly karst Ljubljanica catchment, Slovenia, which has heterogeneous characteristics and is potentially exposed to extreme events that make the modelling process more challenging and crucial. In this regard, the conceptual model CemaNeige Génie Rural à 6 paramètres Journalier (CemaNeige GR6J) was combined with machine learning models, namely wavelet-based support vector regression (WSVR) and wavelet-based multivariate adaptive regression spline (WMARS) to enhance modelling performance. In this study, the performance of the models was comprehensively investigated, considering their ability to forecast daily extreme runoff. Although CemaNeige GR6J yielded a very good performance, it overestimated low flows. The WSVR and WMARS models yielded poorer performance than the conceptual and hybrid models. The hybrid model approach improved the performance of the machine learning models and the conceptual model by revealing the linkage between variables and runoff in the conceptual model, which provided more accurate results for extreme flows. Accordingly, the hybrid models improved the forecasting performance of the maximum flows up to 40 % and 61 %, and minimum flows up to 73 % and 72 % compared to the CemaNeige GR6J and stand-alone machine learning models. In this regard, the hybrid model approach can enhance the daily rainfall-runoff modelling performance in nonhomogeneous and karst catchments where the hydrological process can be more complicated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
NL完成签到,获得积分10
1秒前
1秒前
1秒前
赘婿应助felix采纳,获得10
2秒前
科研通AI2S应助felix采纳,获得10
2秒前
科研通AI2S应助felix采纳,获得10
2秒前
WENYY发布了新的文献求助10
2秒前
min完成签到,获得积分10
2秒前
rudy发布了新的文献求助10
2秒前
2秒前
panpan发布了新的文献求助30
3秒前
yueee完成签到,获得积分10
3秒前
呆萌新之完成签到,获得积分10
3秒前
3秒前
Hello应助落寞的惜萱采纳,获得10
4秒前
量子星尘发布了新的文献求助10
5秒前
刘倩发布了新的文献求助10
5秒前
yi417发布了新的文献求助10
6秒前
6秒前
7秒前
liia完成签到,获得积分10
7秒前
蓝天发布了新的文献求助10
8秒前
SciGPT应助莉莉酱采纳,获得10
8秒前
8秒前
感动的颜演完成签到,获得积分10
8秒前
蒋若风发布了新的文献求助10
9秒前
nnn完成签到,获得积分10
9秒前
JamesPei应助xzx采纳,获得10
9秒前
9秒前
重要从灵发布了新的文献求助10
11秒前
李爱国应助材1采纳,获得30
11秒前
11秒前
12秒前
关琦完成签到,获得积分10
13秒前
13秒前
13秒前
lll完成签到,获得积分10
13秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mechanics of Solids with Applications to Thin Bodies 5000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5601396
求助须知:如何正确求助?哪些是违规求助? 4686922
关于积分的说明 14846724
捐赠科研通 4680979
什么是DOI,文献DOI怎么找? 2539359
邀请新用户注册赠送积分活动 1506257
关于科研通互助平台的介绍 1471293