Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models

概念模型 计算机科学 地表径流 过程(计算) 极限学习机 环境科学 水文学(农业) 机器学习 地质学 生态学 人工神经网络 岩土工程 生物 数据库 操作系统
作者
Cenk Sezen,Mojca Šraj
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:926: 171684-171684 被引量:5
标识
DOI:10.1016/j.scitotenv.2024.171684
摘要

Hydrological modelling can be complex in nonhomogeneous catchments with diverse geological, climatic, and topographic conditions. In this study, an integrated conceptual model including the snow module with machine learning modelling approaches was implemented for daily rainfall-runoff modelling in mostly karst Ljubljanica catchment, Slovenia, which has heterogeneous characteristics and is potentially exposed to extreme events that make the modelling process more challenging and crucial. In this regard, the conceptual model CemaNeige Génie Rural à 6 paramètres Journalier (CemaNeige GR6J) was combined with machine learning models, namely wavelet-based support vector regression (WSVR) and wavelet-based multivariate adaptive regression spline (WMARS) to enhance modelling performance. In this study, the performance of the models was comprehensively investigated, considering their ability to forecast daily extreme runoff. Although CemaNeige GR6J yielded a very good performance, it overestimated low flows. The WSVR and WMARS models yielded poorer performance than the conceptual and hybrid models. The hybrid model approach improved the performance of the machine learning models and the conceptual model by revealing the linkage between variables and runoff in the conceptual model, which provided more accurate results for extreme flows. Accordingly, the hybrid models improved the forecasting performance of the maximum flows up to 40 % and 61 %, and minimum flows up to 73 % and 72 % compared to the CemaNeige GR6J and stand-alone machine learning models. In this regard, the hybrid model approach can enhance the daily rainfall-runoff modelling performance in nonhomogeneous and karst catchments where the hydrological process can be more complicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hungrylunch应助陈玉婷采纳,获得20
刚刚
领导范儿应助hu970采纳,获得10
1秒前
new_vision发布了新的文献求助10
1秒前
拼搏翠桃完成签到,获得积分10
2秒前
糖糖科研顺利呀完成签到 ,获得积分10
2秒前
2秒前
阿秋完成签到,获得积分10
2秒前
Pangsj发布了新的文献求助10
3秒前
hhh发布了新的文献求助10
3秒前
好运藏在善良里完成签到,获得积分10
3秒前
情怀应助奋斗映寒采纳,获得10
3秒前
4秒前
CodeCraft应助牧海冬采纳,获得10
4秒前
zxcv23完成签到,获得积分10
4秒前
5秒前
小离发布了新的文献求助10
5秒前
yug完成签到,获得积分10
5秒前
坟里唱情歌完成签到 ,获得积分10
6秒前
kbj完成签到,获得积分10
6秒前
哈哈哈哈完成签到,获得积分10
6秒前
7秒前
7秒前
7秒前
科研雷锋发布了新的文献求助10
7秒前
gen完成签到,获得积分10
7秒前
简单的丑完成签到,获得积分10
8秒前
今后应助日天的马铃薯采纳,获得10
8秒前
8秒前
8秒前
我是老大应助Ll采纳,获得10
8秒前
Lance先生完成签到,获得积分10
8秒前
9秒前
ChangSZ完成签到,获得积分10
9秒前
日月山河永在完成签到,获得积分10
9秒前
甜蜜英姑完成签到,获得积分10
10秒前
10秒前
怕黑向秋完成签到,获得积分10
10秒前
10秒前
852应助waq采纳,获得10
11秒前
海鸥海鸥完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672