亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models

概念模型 计算机科学 地表径流 过程(计算) 极限学习机 环境科学 水文学(农业) 机器学习 地质学 生态学 人工神经网络 岩土工程 生物 数据库 操作系统
作者
Cenk Sezen,Mojca Šraj
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:926: 171684-171684 被引量:5
标识
DOI:10.1016/j.scitotenv.2024.171684
摘要

Hydrological modelling can be complex in nonhomogeneous catchments with diverse geological, climatic, and topographic conditions. In this study, an integrated conceptual model including the snow module with machine learning modelling approaches was implemented for daily rainfall-runoff modelling in mostly karst Ljubljanica catchment, Slovenia, which has heterogeneous characteristics and is potentially exposed to extreme events that make the modelling process more challenging and crucial. In this regard, the conceptual model CemaNeige Génie Rural à 6 paramètres Journalier (CemaNeige GR6J) was combined with machine learning models, namely wavelet-based support vector regression (WSVR) and wavelet-based multivariate adaptive regression spline (WMARS) to enhance modelling performance. In this study, the performance of the models was comprehensively investigated, considering their ability to forecast daily extreme runoff. Although CemaNeige GR6J yielded a very good performance, it overestimated low flows. The WSVR and WMARS models yielded poorer performance than the conceptual and hybrid models. The hybrid model approach improved the performance of the machine learning models and the conceptual model by revealing the linkage between variables and runoff in the conceptual model, which provided more accurate results for extreme flows. Accordingly, the hybrid models improved the forecasting performance of the maximum flows up to 40 % and 61 %, and minimum flows up to 73 % and 72 % compared to the CemaNeige GR6J and stand-alone machine learning models. In this regard, the hybrid model approach can enhance the daily rainfall-runoff modelling performance in nonhomogeneous and karst catchments where the hydrological process can be more complicated.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助安静海露采纳,获得10
5秒前
11秒前
13秒前
moika发布了新的文献求助10
15秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
科研通AI6应助科研通管家采纳,获得10
17秒前
安静海露发布了新的文献求助10
18秒前
如意竺完成签到,获得积分0
28秒前
哈哈哈完成签到 ,获得积分10
1分钟前
1分钟前
红火完成签到 ,获得积分10
1分钟前
三三完成签到,获得积分10
1分钟前
三心草完成签到 ,获得积分10
1分钟前
斯文的访烟完成签到,获得积分10
1分钟前
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
科研通AI6应助科研通管家采纳,获得10
2分钟前
2分钟前
3分钟前
量子星尘发布了新的文献求助10
3分钟前
科目三应助moika采纳,获得10
3分钟前
444发布了新的文献求助10
3分钟前
打打应助安静海露采纳,获得10
4分钟前
科研通AI6应助444采纳,获得10
4分钟前
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
科研通AI6应助科研通管家采纳,获得10
4分钟前
安静海露发布了新的文献求助10
4分钟前
李健应助好人采纳,获得10
4分钟前
安静海露完成签到,获得积分10
4分钟前
444完成签到,获得积分20
4分钟前
5分钟前
好人发布了新的文献求助10
5分钟前
6分钟前
开心每一天完成签到 ,获得积分10
6分钟前
123发布了新的文献求助10
6分钟前
6分钟前
科研通AI6应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5772968
求助须知:如何正确求助?哪些是违规求助? 5604636
关于积分的说明 15430227
捐赠科研通 4905689
什么是DOI,文献DOI怎么找? 2639648
邀请新用户注册赠送积分活动 1587551
关于科研通互助平台的介绍 1542496