Improving the simulations of the hydrological model in the karst catchment by integrating the conceptual model with machine learning models

概念模型 计算机科学 地表径流 过程(计算) 极限学习机 环境科学 水文学(农业) 机器学习 地质学 生态学 人工神经网络 岩土工程 数据库 生物 操作系统
作者
Cenk Sezen,Mojca Šraj
出处
期刊:Science of The Total Environment [Elsevier]
卷期号:926: 171684-171684 被引量:5
标识
DOI:10.1016/j.scitotenv.2024.171684
摘要

Hydrological modelling can be complex in nonhomogeneous catchments with diverse geological, climatic, and topographic conditions. In this study, an integrated conceptual model including the snow module with machine learning modelling approaches was implemented for daily rainfall-runoff modelling in mostly karst Ljubljanica catchment, Slovenia, which has heterogeneous characteristics and is potentially exposed to extreme events that make the modelling process more challenging and crucial. In this regard, the conceptual model CemaNeige Génie Rural à 6 paramètres Journalier (CemaNeige GR6J) was combined with machine learning models, namely wavelet-based support vector regression (WSVR) and wavelet-based multivariate adaptive regression spline (WMARS) to enhance modelling performance. In this study, the performance of the models was comprehensively investigated, considering their ability to forecast daily extreme runoff. Although CemaNeige GR6J yielded a very good performance, it overestimated low flows. The WSVR and WMARS models yielded poorer performance than the conceptual and hybrid models. The hybrid model approach improved the performance of the machine learning models and the conceptual model by revealing the linkage between variables and runoff in the conceptual model, which provided more accurate results for extreme flows. Accordingly, the hybrid models improved the forecasting performance of the maximum flows up to 40 % and 61 %, and minimum flows up to 73 % and 72 % compared to the CemaNeige GR6J and stand-alone machine learning models. In this regard, the hybrid model approach can enhance the daily rainfall-runoff modelling performance in nonhomogeneous and karst catchments where the hydrological process can be more complicated.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的太清完成签到 ,获得积分10
刚刚
涵泽发布了新的文献求助10
1秒前
1秒前
Suyx发布了新的文献求助10
1秒前
2秒前
ding应助Antares采纳,获得10
2秒前
田様应助烂漫凝竹采纳,获得10
2秒前
科研通AI6应助cjch2025采纳,获得10
2秒前
未道发布了新的文献求助10
3秒前
星辰大海应助xiaobai采纳,获得10
3秒前
天将明完成签到,获得积分10
3秒前
4秒前
5秒前
科研通AI6应助djbj2022采纳,获得10
5秒前
xiaohuang发布了新的文献求助10
5秒前
vividkingking发布了新的文献求助10
5秒前
NexusExplorer应助吴念采纳,获得10
7秒前
7秒前
KKKZ完成签到,获得积分10
8秒前
大胆傲芙完成签到,获得积分10
9秒前
今后应助高宇晖采纳,获得10
9秒前
凉秋气爽完成签到,获得积分10
10秒前
10秒前
盖亚奇应助ocean采纳,获得20
11秒前
浮游应助天将明采纳,获得10
12秒前
13秒前
13秒前
13秒前
14秒前
9527King发布了新的文献求助10
15秒前
SZY发布了新的文献求助10
15秒前
15秒前
GGGT关注了科研通微信公众号
16秒前
无非发布了新的文献求助10
16秒前
研友_VZG7GZ应助殷勤的秋荷采纳,获得10
16秒前
林小鱼发布了新的文献求助10
17秒前
豪士赋完成签到,获得积分10
17秒前
18秒前
躞蹀发布了新的文献求助10
18秒前
失眠的耳机完成签到,获得积分10
19秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5342918
求助须知:如何正确求助?哪些是违规求助? 4478608
关于积分的说明 13940254
捐赠科研通 4375531
什么是DOI,文献DOI怎么找? 2404114
邀请新用户注册赠送积分活动 1396625
关于科研通互助平台的介绍 1368965