SCAC: A Semi-Supervised Learning Approach for Cervical Abnormal Cell Detection

计算机科学 人工智能 计算机视觉
作者
Z.P Zhang,Peng Yao,Mingxiao Chen,Liang Zeng,Pengfei Shao,Peng Yao,Peng Yao
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3501-3512
标识
DOI:10.1109/jbhi.2024.3375889
摘要

Cervical abnormal cell detection plays a crucial role in the early screening of cervical cancer. In recent years, some deep learning-based methods have been proposed. However, these methods rely heavily on large amounts of annotated images, which are time-consuming and laborintensive to acquire, thus limiting the detection performance. In this paper, we present a novel Semi-supervised Cervical Abnormal Cell detector (SCAC), which effectively utilizes the abundant unlabeled data. We utilize Transformer as the backbone of SCAC to capture long-range dependencies to mimic the diagnostic process of pathologists. In addition, in SCAC, we design a Unified Strong and Weak Augment strategy (USWA) that unifies two data augmentation pipelines, implementing consistent regularization in semisupervised learning and enhancing the diversity of the training data. We also develop a Global Attention Feature Pyramid Network (GAFPN), which utilizes the attention mechanism to better extract multi-scale features from cervical cytology images. Notably, we have created an unlabeled cervical cytology image dataset, which can be leveraged by semi-supervised learning to enhance detection accuracy. To the best of our knowledge, this is the first publicly available large unlabeled cervical cytology image dataset. By combining this dataset with two publicly available annotated datasets, we demonstrate that SCAC outperforms other existing methods, achieving state-of-theart performance. Additionally, comprehensive ablation studies are conducted to validate the effectiveness of USWA and GAFPN. These promising results highlight the capability of SCAC to achieve high diagnostic accuracy and extensive clinical applications. The code and dataset are publicly available at https://github.com/Lewisonez/cc_detection .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助通义千问采纳,获得10
刚刚
duoduo发布了新的文献求助10
1秒前
quan完成签到,获得积分10
1秒前
xjcy应助江j采纳,获得10
2秒前
锦墨人生完成签到,获得积分10
4秒前
悠悠夏日长完成签到 ,获得积分10
6秒前
mystery发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
8秒前
张斯瑞完成签到,获得积分10
10秒前
11秒前
LeungYM完成签到 ,获得积分10
11秒前
锦墨人生发布了新的文献求助10
11秒前
Always完成签到,获得积分10
11秒前
通义千问发布了新的文献求助10
13秒前
在水一方应助研友_xnEOX8采纳,获得10
13秒前
星辰大海应助东郭半鬼采纳,获得10
14秒前
Jasper应助张斯瑞采纳,获得30
14秒前
Lucas应助Uuuuuuumi采纳,获得10
15秒前
16秒前
yjf完成签到,获得积分10
16秒前
gnufgg完成签到,获得积分10
16秒前
19秒前
风趣的无剑完成签到,获得积分10
19秒前
小二郎应助包容的小熊猫采纳,获得10
20秒前
20秒前
zty发布了新的文献求助10
21秒前
21秒前
丹之藏者发布了新的文献求助10
22秒前
xjcy应助研友_xnEOX8采纳,获得30
22秒前
gnr2000完成签到,获得积分0
22秒前
还好完成签到,获得积分10
23秒前
24秒前
希望天下0贩的0应助ymt采纳,获得10
24秒前
大个应助无敌风火轮采纳,获得10
24秒前
25秒前
小二郎应助wangjiale采纳,获得10
25秒前
xjcy应助yd采纳,获得10
26秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3212106
求助须知:如何正确求助?哪些是违规求助? 2860906
关于积分的说明 8126737
捐赠科研通 2526835
什么是DOI,文献DOI怎么找? 1360630
科研通“疑难数据库(出版商)”最低求助积分说明 643249
邀请新用户注册赠送积分活动 615571