SCAC: A Semi-Supervised Learning Approach for Cervical Abnormal Cell Detection

计算机科学 人工智能 计算机视觉
作者
Zheng Zhang,Peng Yao,Mingxiao Chen,Liang Zeng,Pengfei Shao,Shuwei Shen,Ronald X. Xu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:28 (6): 3501-3512 被引量:2
标识
DOI:10.1109/jbhi.2024.3375889
摘要

Cervical abnormal cell detection plays a crucial role in the early screening of cervical cancer. In recent years, some deep learning-based methods have been proposed. However, these methods rely heavily on large amounts of annotated images, which are time-consuming and laborintensive to acquire, thus limiting the detection performance. In this paper, we present a novel Semi-supervised Cervical Abnormal Cell detector (SCAC), which effectively utilizes the abundant unlabeled data. We utilize Transformer as the backbone of SCAC to capture long-range dependencies to mimic the diagnostic process of pathologists. In addition, in SCAC, we design a Unified Strong and Weak Augment strategy (USWA) that unifies two data augmentation pipelines, implementing consistent regularization in semisupervised learning and enhancing the diversity of the training data. We also develop a Global Attention Feature Pyramid Network (GAFPN), which utilizes the attention mechanism to better extract multi-scale features from cervical cytology images. Notably, we have created an unlabeled cervical cytology image dataset, which can be leveraged by semi-supervised learning to enhance detection accuracy. To the best of our knowledge, this is the first publicly available large unlabeled cervical cytology image dataset. By combining this dataset with two publicly available annotated datasets, we demonstrate that SCAC outperforms other existing methods, achieving state-of-theart performance. Additionally, comprehensive ablation studies are conducted to validate the effectiveness of USWA and GAFPN. These promising results highlight the capability of SCAC to achieve high diagnostic accuracy and extensive clinical applications. The code and dataset are publicly available at https://github.com/Lewisonez/cc_detection .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Akim应助愤怒的qiang采纳,获得10
刚刚
1秒前
1秒前
2秒前
sfdghik发布了新的文献求助10
2秒前
3秒前
严笑容发布了新的文献求助10
5秒前
sfdghik完成签到,获得积分10
7秒前
沐沐羚完成签到,获得积分10
9秒前
小希驳回了烟花应助
9秒前
9秒前
今后应助晏啊采纳,获得10
10秒前
10秒前
12秒前
Ultraviolet发布了新的文献求助10
14秒前
15秒前
16秒前
天天快乐应助知性的采珊采纳,获得10
17秒前
Lucas应助知性的采珊采纳,获得10
17秒前
虚心傲丝发布了新的文献求助30
19秒前
tang_c完成签到,获得积分10
24秒前
乐乐应助宣孤菱采纳,获得10
25秒前
26秒前
争取不秃顶的医学僧完成签到,获得积分10
26秒前
27秒前
漂亮幻莲发布了新的文献求助10
27秒前
虚心傲丝完成签到,获得积分10
27秒前
28秒前
29秒前
glj完成签到,获得积分10
30秒前
30秒前
30秒前
zho发布了新的文献求助10
30秒前
Jasper应助酷炫的面包采纳,获得10
30秒前
榴莲发布了新的文献求助10
30秒前
chinaclfeng完成签到,获得积分10
30秒前
Abai发布了新的文献求助10
31秒前
嗯好22222发布了新的文献求助50
31秒前
alna发布了新的文献求助10
32秒前
34秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3737545
求助须知:如何正确求助?哪些是违规求助? 3281271
关于积分的说明 10024202
捐赠科研通 2998002
什么是DOI,文献DOI怎么找? 1644955
邀请新用户注册赠送积分活动 782443
科研通“疑难数据库(出版商)”最低求助积分说明 749794