Semi-supervised pathological image segmentation via cross distillation of multiple attentions and Seg-CAM consistency

一致性(知识库) 人工智能 分割 模式识别(心理学) 解码方法 杠杆(统计) 计算机科学 编码器 注释 机器学习 管道(软件) 算法 操作系统 程序设计语言
作者
Lanfeng Zhong,Xiangde Luo,Xin Liao,Shaoting Zhang,Guotai Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:152: 110492-110492 被引量:6
标识
DOI:10.1016/j.patcog.2024.110492
摘要

Segmentation of pathological images is a crucial step for accurate cancer diagnosis. However, acquiring dense annotations of such images for training is labor-intensive and time-consuming. To address this issue, Semi-Supervised Learning (SSL) has the potential for reducing the annotation cost, but it is challenged by a large number of unlabeled training images. In this paper, we propose a novel SSL method based on Cross Distillation of Multiple Attentions and Seg-CAM Consistency (CDMA+) to effectively leverage unlabeled images. First, we propose a Multi-attention Tri-decoder Network (MTNet) that consists of a shared encoder and three decoders, with each decoder using a different attention mechanism that calibrates features in different aspects to generate diverse outputs. Second, we introduce Cross Decoder Knowledge Distillation (CDKD) between the three decoders, allowing them to learn from each other's soft labels to mitigate the negative impact of incorrect pseudo labels during training. Subsequently, motivated by the observation that the Class Activation Maps (CAMs) derived from the classification task could provide a rough segmentation, we employ an auxiliary classification head and introduce a consistency constraint between the CAM and segmentation results, i.e. Seg-CAM consistency. Additionally, uncertainty minimization is applied to the average prediction of the three decoders, which further regularizes predictions on unlabeled images and encourages inter-decoder consistency. Our proposed CDMA+ was compared with eight state-of-the-art SSL methods on two public pathological image datasets, and the experimental results showed that our method outperforms the other approaches under different annotation ratios. The code is available at https://github.com/HiLab-git/CDMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lexcellent发布了新的文献求助10
刚刚
1秒前
善学以致用应助LOVAE采纳,获得10
1秒前
1秒前
CH11完成签到,获得积分10
2秒前
锅锅发布了新的文献求助10
2秒前
边边玥铭发布了新的文献求助10
2秒前
2秒前
2秒前
飘雪完成签到,获得积分10
3秒前
FSX639163发布了新的文献求助10
3秒前
3秒前
隐形元绿发布了新的文献求助20
4秒前
AHA完成签到,获得积分10
4秒前
5秒前
爆米花应助Lexcellent采纳,获得10
6秒前
SciGPT应助blueweier采纳,获得10
6秒前
Hello应助哭泣的大碗采纳,获得10
7秒前
理想国的建造者完成签到,获得积分10
7秒前
小晴天发布了新的文献求助10
7秒前
song完成签到 ,获得积分10
8秒前
Alice完成签到,获得积分20
9秒前
9秒前
Joan应助锅锅采纳,获得10
10秒前
10秒前
10秒前
11秒前
11秒前
李健应助积极的绿竹采纳,获得10
13秒前
song关注了科研通微信公众号
13秒前
13秒前
着急毕业的干饭人完成签到,获得积分10
13秒前
浮游应助buyi采纳,获得10
14秒前
利于蓄力发布了新的文献求助20
15秒前
脑洞疼应助售后延长采纳,获得10
15秒前
边边玥铭完成签到,获得积分20
15秒前
15秒前
电磁炮发布了新的文献求助10
15秒前
小蘑菇应助ju龙哥采纳,获得10
16秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Vertebrate Palaeontology, 5th Edition 530
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5352815
求助须知:如何正确求助?哪些是违规求助? 4485572
关于积分的说明 13963607
捐赠科研通 4385646
什么是DOI,文献DOI怎么找? 2409546
邀请新用户注册赠送积分活动 1401867
关于科研通互助平台的介绍 1375547