Semi-supervised pathological image segmentation via cross distillation of multiple attentions and Seg-CAM consistency

一致性(知识库) 人工智能 分割 模式识别(心理学) 计算机科学 图像(数学) 蒸馏 图像分割 病态的 计算机视觉 数学 色谱法 化学 数学分析
作者
Lanfeng Zhong,Xiangde Luo,Xin Liao,Shaoting Zhang,Guotai Wang
出处
期刊:Pattern Recognition [Elsevier]
卷期号:152: 110492-110492
标识
DOI:10.1016/j.patcog.2024.110492
摘要

Segmentation of pathological images is a crucial step for accurate cancer diagnosis. However, acquiring dense annotations of such images for training is labor-intensive and time-consuming. To address this issue, Semi-Supervised Learning (SSL) has the potential for reducing the annotation cost, but it is challenged by a large number of unlabeled training images. In this paper, we propose a novel SSL method based on Cross Distillation of Multiple Attentions and Seg-CAM Consistency (CDMA+) to effectively leverage unlabeled images. First, we propose a Multi-attention Tri-decoder Network (MTNet) that consists of a shared encoder and three decoders, with each decoder using a different attention mechanism that calibrates features in different aspects to generate diverse outputs. Second, we introduce Cross Decoder Knowledge Distillation (CDKD) between the three decoders, allowing them to learn from each other's soft labels to mitigate the negative impact of incorrect pseudo labels during training. Subsequently, motivated by the observation that the Class Activation Maps (CAMs) derived from the classification task could provide a rough segmentation, we employ an auxiliary classification head and introduce a consistency constraint between the CAM and segmentation results, i.e. Seg-CAM consistency. Additionally, uncertainty minimization is applied to the average prediction of the three decoders, which further regularizes predictions on unlabeled images and encourages inter-decoder consistency. Our proposed CDMA+ was compared with eight state-of-the-art SSL methods on two public pathological image datasets, and the experimental results showed that our method outperforms the other approaches under different annotation ratios. The code is available at https://github.com/HiLab-git/CDMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
sb发布了新的文献求助10
2秒前
2秒前
华仔应助科研通管家采纳,获得10
2秒前
Ava应助科研通管家采纳,获得10
2秒前
虚幻的冰真完成签到,获得积分10
2秒前
赘婿应助科研通管家采纳,获得10
2秒前
大模型应助科研通管家采纳,获得10
2秒前
8R60d8应助科研通管家采纳,获得10
2秒前
充电宝应助科研通管家采纳,获得30
2秒前
wanci应助科研通管家采纳,获得10
2秒前
3秒前
可乐应助科研通管家采纳,获得10
3秒前
传奇3应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
3秒前
Dkakxncnsksl发布了新的文献求助10
3秒前
ding应助科研通管家采纳,获得10
3秒前
华仔应助科研通管家采纳,获得10
3秒前
3秒前
大模型应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得20
3秒前
3秒前
3秒前
8R60d8应助科研通管家采纳,获得10
3秒前
可乐应助科研通管家采纳,获得10
3秒前
小鱼鱼Fish完成签到,获得积分10
4秒前
天天快乐应助zhang005on采纳,获得10
4秒前
spolo完成签到,获得积分10
4秒前
无敌小车完成签到,获得积分10
5秒前
自由马丁发布了新的文献求助10
5秒前
Mingdoc发布了新的文献求助10
5秒前
6秒前
三土有兀完成签到,获得积分10
6秒前
搜集达人应助丶泷采纳,获得10
7秒前
7秒前
7秒前
含蓄绿兰完成签到,获得积分10
8秒前
细胞呵呵完成签到,获得积分10
8秒前
科研小白发布了新的文献求助10
9秒前
9秒前
高分求助中
Evolution 3rd edition 1500
Lire en communiste 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
the development of the right of privacy in new york 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3180123
求助须知:如何正确求助?哪些是违规求助? 2830514
关于积分的说明 7978030
捐赠科研通 2492090
什么是DOI,文献DOI怎么找? 1329207
科研通“疑难数据库(出版商)”最低求助积分说明 635704
版权声明 602954