Semi-supervised pathological image segmentation via cross distillation of multiple attentions and Seg-CAM consistency

一致性(知识库) 人工智能 分割 模式识别(心理学) 解码方法 杠杆(统计) 计算机科学 编码器 注释 机器学习 管道(软件) 算法 操作系统 程序设计语言
作者
Lanfeng Zhong,Xiangde Luo,Xin Liao,Shaoting Zhang,Guotai Wang
出处
期刊:Pattern Recognition [Elsevier BV]
卷期号:152: 110492-110492 被引量:6
标识
DOI:10.1016/j.patcog.2024.110492
摘要

Segmentation of pathological images is a crucial step for accurate cancer diagnosis. However, acquiring dense annotations of such images for training is labor-intensive and time-consuming. To address this issue, Semi-Supervised Learning (SSL) has the potential for reducing the annotation cost, but it is challenged by a large number of unlabeled training images. In this paper, we propose a novel SSL method based on Cross Distillation of Multiple Attentions and Seg-CAM Consistency (CDMA+) to effectively leverage unlabeled images. First, we propose a Multi-attention Tri-decoder Network (MTNet) that consists of a shared encoder and three decoders, with each decoder using a different attention mechanism that calibrates features in different aspects to generate diverse outputs. Second, we introduce Cross Decoder Knowledge Distillation (CDKD) between the three decoders, allowing them to learn from each other's soft labels to mitigate the negative impact of incorrect pseudo labels during training. Subsequently, motivated by the observation that the Class Activation Maps (CAMs) derived from the classification task could provide a rough segmentation, we employ an auxiliary classification head and introduce a consistency constraint between the CAM and segmentation results, i.e. Seg-CAM consistency. Additionally, uncertainty minimization is applied to the average prediction of the three decoders, which further regularizes predictions on unlabeled images and encourages inter-decoder consistency. Our proposed CDMA+ was compared with eight state-of-the-art SSL methods on two public pathological image datasets, and the experimental results showed that our method outperforms the other approaches under different annotation ratios. The code is available at https://github.com/HiLab-git/CDMA.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
笨笨松发布了新的文献求助10
1秒前
赢一把去睡觉完成签到,获得积分10
2秒前
善学以致用应助沉默凡英采纳,获得10
3秒前
elysia完成签到,获得积分10
4秒前
如意2023发布了新的文献求助10
4秒前
桐桐应助modesty采纳,获得10
4秒前
5秒前
5秒前
7秒前
8秒前
9秒前
10秒前
aaaaaa发布了新的文献求助10
10秒前
10秒前
xuan完成签到,获得积分10
11秒前
兜有米发布了新的文献求助10
12秒前
12秒前
12秒前
13秒前
goodgay133发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
思源应助aaaaaa采纳,获得10
15秒前
江月年发布了新的文献求助10
16秒前
陈冲冲发布了新的文献求助10
17秒前
眰恦完成签到 ,获得积分10
17秒前
17秒前
modesty发布了新的文献求助10
17秒前
锐123发布了新的文献求助10
18秒前
桐桐应助zby2采纳,获得10
18秒前
18秒前
19秒前
子车万仇发布了新的文献求助10
20秒前
兜有米完成签到,获得积分10
20秒前
20秒前
幽默飞雪完成签到 ,获得积分10
22秒前
桐桐应助陈冲冲采纳,获得10
23秒前
画晴发布了新的文献求助20
23秒前
酷波er应助科研通管家采纳,获得10
24秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967156
求助须知:如何正确求助?哪些是违规求助? 3512491
关于积分的说明 11163601
捐赠科研通 3247421
什么是DOI,文献DOI怎么找? 1793805
邀请新用户注册赠送积分活动 874615
科研通“疑难数据库(出版商)”最低求助积分说明 804468