Time-series land cover change detection using deep learning-based temporal semantic segmentation

遥感 变更检测 土地覆盖 分割 系列(地层学) 计算机科学 封面(代数) 人工智能 土地利用 地质学 机械工程 古生物学 土木工程 工程类
作者
Haixu He,Jining Yan,Dong Liang,Zhongchang Sun,Jun Li,Lizhe Wang
出处
期刊:Remote Sensing of Environment [Elsevier BV]
卷期号:305: 114101-114101 被引量:18
标识
DOI:10.1016/j.rse.2024.114101
摘要

The process of sustainable urban development is accompanied by frequent and complex land cover changes, and thus, clarify accurate information on land cover changes can provide scientific data for urban management. To characterize urban development at an accurate spatiotemporal scale, a change detection model is not only required to provide accurate location (Where) and time (When) of the changes, but also semantic information on the change types (What). Accordingly, this study proposed a deep learning method for temporal semantic segmentation change detection (TSSCD) that obtains information on the where, when, and what of changes simultaneously. TSSCD model bridges the semantic gap between remote sensing time series abrupt changes and land cover changes by learning the month-to-month mapping from spectral information to land cover types. We implemented a temporal semantic segmentation model based on the most classic fully convolutional network, where all two-dimensional convolutions and pooling operations were replaced with one-dimensional. We conducted tests on the TSSCD in several urban study areas, and it consistently exhibited good accuracy. In most cases, it outperformed the BFAST and CCDC algorithms, except when only a single spectral band was used. Simultaneously, we analyzed the minimum data requirements for training a TSSCD. The TSSCD currently faces challenges in achieving strong generalization beyond the training data distribution. Additionally, we observed that change detection for specific land cover types can be achieved through the flexible configuration of TSSCD. Finally, we explored a method for constructing datasets using existing products to minimize data annotation efforts, yielding promising results. However, there is still some gap compared to complete manual annotation. Overall, the TSSCD model provided a novel solution to accurately characterize sustainable urban development at the spatiotemporal scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
呐呐呐完成签到 ,获得积分10
1秒前
1秒前
马丝雨发布了新的文献求助20
2秒前
3秒前
彭于晏应助闹南南采纳,获得10
4秒前
隐形夕阳完成签到 ,获得积分10
4秒前
4秒前
ZZ发布了新的文献求助10
5秒前
jin驳回了Jasper应助
5秒前
早岁发布了新的文献求助10
6秒前
6秒前
CAOHOU应助喷黄采纳,获得10
6秒前
7秒前
7秒前
Lucas应助科研通管家采纳,获得10
7秒前
YamDaamCaa应助科研通管家采纳,获得30
7秒前
Jasper应助科研通管家采纳,获得10
7秒前
研友_VZG7GZ应助科研通管家采纳,获得10
7秒前
CipherSage应助科研通管家采纳,获得10
8秒前
8秒前
ll应助科研通管家采纳,获得10
8秒前
顾矜应助科研通管家采纳,获得10
8秒前
完美世界应助科研通管家采纳,获得30
8秒前
所所应助科研通管家采纳,获得10
8秒前
8秒前
8秒前
8秒前
思源应助科研通管家采纳,获得10
8秒前
华仔应助科研通管家采纳,获得10
8秒前
芸栀发布了新的文献求助10
8秒前
科研通AI2S应助无辜冷风采纳,获得10
9秒前
9秒前
10秒前
安ananan羽完成签到,获得积分10
11秒前
胡建鹏发布了新的文献求助10
12秒前
Davidjin完成签到,获得积分10
13秒前
N型半导体完成签到 ,获得积分10
13秒前
gnufgg完成签到,获得积分10
13秒前
SYLH应助夕荀采纳,获得20
13秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979840
求助须知:如何正确求助?哪些是违规求助? 3523885
关于积分的说明 11219083
捐赠科研通 3261375
什么是DOI,文献DOI怎么找? 1800602
邀请新用户注册赠送积分活动 879189
科研通“疑难数据库(出版商)”最低求助积分说明 807202