Time-series land cover change detection using deep learning-based temporal semantic segmentation

遥感 变更检测 土地覆盖 分割 系列(地层学) 计算机科学 封面(代数) 人工智能 土地利用 地质学 机械工程 古生物学 土木工程 工程类
作者
Haixu He,Jining Yan,Dong Liang,Zhongchang Sun,Jun Li,Lizhe Wang
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:305: 114101-114101 被引量:6
标识
DOI:10.1016/j.rse.2024.114101
摘要

The process of sustainable urban development is accompanied by frequent and complex land cover changes, and thus, clarify accurate information on land cover changes can provide scientific data for urban management. To characterize urban development at an accurate spatiotemporal scale, a change detection model is not only required to provide accurate location (Where) and time (When) of the changes, but also semantic information on the change types (What). Accordingly, this study proposed a deep learning method for temporal semantic segmentation change detection (TSSCD) that obtains information on the where, when, and what of changes simultaneously. TSSCD model bridges the semantic gap between remote sensing time series abrupt changes and land cover changes by learning the month-to-month mapping from spectral information to land cover types. We implemented a temporal semantic segmentation model based on the most classic fully convolutional network, where all two-dimensional convolutions and pooling operations were replaced with one-dimensional. We conducted tests on the TSSCD in several urban study areas, and it consistently exhibited good accuracy. In most cases, it outperformed the BFAST and CCDC algorithms, except when only a single spectral band was used. Simultaneously, we analyzed the minimum data requirements for training a TSSCD. The TSSCD currently faces challenges in achieving strong generalization beyond the training data distribution. Additionally, we observed that change detection for specific land cover types can be achieved through the flexible configuration of TSSCD. Finally, we explored a method for constructing datasets using existing products to minimize data annotation efforts, yielding promising results. However, there is still some gap compared to complete manual annotation. Overall, the TSSCD model provided a novel solution to accurately characterize sustainable urban development at the spatiotemporal scale.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wx发布了新的文献求助50
1秒前
2秒前
Nekozzzz完成签到,获得积分10
2秒前
4秒前
4秒前
大个应助叶绿体机智采纳,获得10
5秒前
Moonboss发布了新的文献求助10
7秒前
一郭红烧肉完成签到,获得积分10
7秒前
今后应助加菲丰丰采纳,获得10
7秒前
7秒前
沉思、完成签到,获得积分10
8秒前
8秒前
艺凯完成签到,获得积分10
9秒前
开朗洋葱完成签到,获得积分10
10秒前
在水一方应助swing采纳,获得10
11秒前
科研的师弟应助碧蓝紫雪采纳,获得10
12秒前
12秒前
徐若楠发布了新的文献求助10
13秒前
苏书白应助cloud采纳,获得30
13秒前
14秒前
15秒前
共享精神应助蓬莱山采纳,获得30
15秒前
15秒前
英俊的铭应助LCct采纳,获得10
15秒前
15秒前
16秒前
fml发布了新的文献求助10
16秒前
16秒前
ld发布了新的文献求助10
16秒前
JamesPei应助GGbond采纳,获得10
16秒前
科研狗发布了新的文献求助10
17秒前
17秒前
深情安青应助lzc采纳,获得10
17秒前
1111完成签到,获得积分20
18秒前
Akim应助德德采纳,获得10
19秒前
明柯完成签到,获得积分20
20秒前
20秒前
小老板完成签到,获得积分20
21秒前
21秒前
23秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149155
求助须知:如何正确求助?哪些是违规求助? 2800230
关于积分的说明 7839164
捐赠科研通 2457781
什么是DOI,文献DOI怎么找? 1308112
科研通“疑难数据库(出版商)”最低求助积分说明 628408
版权声明 601706