Rapid Urban Flood Inundation Forecasting Using a Physics-Informed Deep Learning Approach

大洪水 环境科学 洪水预报 气象学 计算机科学 地理 考古
作者
F. Yang,Ding Wu,Jianshi Zhao,Lixiang Song,Dawen Yang,Xudong Li
标识
DOI:10.2139/ssrn.4758455
摘要

Physics-based models can achieve precise flood inundation forecasts, but their real-world application is limited by their high computational cost. Deep learning (DL) models, with the capability to establish mapping relationships for complex mechanistic processes and high computational efficiency, serve as promising alternatives. However, DL models require massive amounts of training data to achieve robust performance, and such data are not available in most cases. In this study, an approach that couples a hydrodynamic model and a DL model to realize rapid forecasting of urban flood inundation is proposed. Substantial data on urban flood inundation under varying rainfall events are generated based on the hydrodynamic model. Real-time water level data from hydrological gauges are employed to establish initial conditions. Based on these data, a DL model that fully considers the physical mechanisms of flood inundation and the feature attributes of inputs and outputs is developed. The results show that 1) the hydrodynamic model effectively provides training samples for the DL model, addressing the limitations of insufficient urban flood inundation data; 2) the DL model proficiently captures the occurrence of grid-based flood inundation events, demonstrating commendable effectiveness in predicting inundation depths with a high level of accuracy; and 3) the DL model forecasts flood inundation in a region of 250,000 grids over 12 time steps within 12 seconds, meeting the requirements for real-time management. Compared to traditional hydrodynamic modeling methods, the proposed approach enhances forecasting efficiency and yields high accuracy, providing an efficient and accurate method for urban flood inundation forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怎么说应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
CodeCraft应助科研通管家采纳,获得30
刚刚
刚刚
刚刚
刚刚
刚刚
刚刚
Tiamoliar发布了新的文献求助30
刚刚
hhhhhh完成签到 ,获得积分10
1秒前
Jsl完成签到,获得积分10
2秒前
明朗发布了新的文献求助10
3秒前
Akim应助zgd采纳,获得10
5秒前
轩少的发布了新的文献求助10
5秒前
chenzhen发布了新的文献求助10
5秒前
6秒前
77完成签到,获得积分10
6秒前
ningjianing完成签到,获得积分10
7秒前
8秒前
9秒前
www完成签到,获得积分10
9秒前
米乐时光完成签到 ,获得积分10
9秒前
9秒前
拘礼夫人发布了新的文献求助10
10秒前
haihao完成签到,获得积分10
11秒前
11秒前
12秒前
Robert发布了新的文献求助10
13秒前
昕wei完成签到 ,获得积分10
13秒前
Apricity发布了新的文献求助10
14秒前
Akim应助矮小的猎豹采纳,获得10
15秒前
雨点发布了新的文献求助10
15秒前
一条鱼发布了新的文献求助10
15秒前
15秒前
WYP发布了新的文献求助10
16秒前
16秒前
彭于彦祖应助ernest采纳,获得30
17秒前
善学以致用应助zhang采纳,获得10
17秒前
小蘑菇应助咋了采纳,获得30
19秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
不知道标题是什么 500
Christian Women in Chinese Society: The Anglican Story 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961980
求助须知:如何正确求助?哪些是违规求助? 3508280
关于积分的说明 11140173
捐赠科研通 3240897
什么是DOI,文献DOI怎么找? 1791091
邀请新用户注册赠送积分活动 872726
科研通“疑难数据库(出版商)”最低求助积分说明 803352