亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Rapid Urban Flood Inundation Forecasting Using a Physics-Informed Deep Learning Approach

大洪水 环境科学 洪水预报 气象学 计算机科学 地理 考古
作者
F. Yang,Ding Wu,Jianshi Zhao,Lixiang Song,Dawen Yang,Xudong Li
标识
DOI:10.2139/ssrn.4758455
摘要

Physics-based models can achieve precise flood inundation forecasts, but their real-world application is limited by their high computational cost. Deep learning (DL) models, with the capability to establish mapping relationships for complex mechanistic processes and high computational efficiency, serve as promising alternatives. However, DL models require massive amounts of training data to achieve robust performance, and such data are not available in most cases. In this study, an approach that couples a hydrodynamic model and a DL model to realize rapid forecasting of urban flood inundation is proposed. Substantial data on urban flood inundation under varying rainfall events are generated based on the hydrodynamic model. Real-time water level data from hydrological gauges are employed to establish initial conditions. Based on these data, a DL model that fully considers the physical mechanisms of flood inundation and the feature attributes of inputs and outputs is developed. The results show that 1) the hydrodynamic model effectively provides training samples for the DL model, addressing the limitations of insufficient urban flood inundation data; 2) the DL model proficiently captures the occurrence of grid-based flood inundation events, demonstrating commendable effectiveness in predicting inundation depths with a high level of accuracy; and 3) the DL model forecasts flood inundation in a region of 250,000 grids over 12 time steps within 12 seconds, meeting the requirements for real-time management. Compared to traditional hydrodynamic modeling methods, the proposed approach enhances forecasting efficiency and yields high accuracy, providing an efficient and accurate method for urban flood inundation forecasting.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
称心的麦片完成签到,获得积分10
3秒前
38秒前
andrele发布了新的文献求助30
43秒前
1分钟前
Jerry发布了新的文献求助10
1分钟前
Nefelibata完成签到,获得积分10
1分钟前
CDabin完成签到,获得积分10
1分钟前
1分钟前
英俊的铭应助blue2021采纳,获得10
1分钟前
活力半凡发布了新的文献求助10
1分钟前
1分钟前
Jerry完成签到,获得积分10
1分钟前
房天川完成签到 ,获得积分10
1分钟前
2分钟前
活力半凡完成签到,获得积分20
2分钟前
深情安青应助科研通管家采纳,获得10
2分钟前
Billy应助科研通管家采纳,获得60
2分钟前
hanmy发布了新的文献求助10
2分钟前
LL完成签到,获得积分10
2分钟前
2分钟前
Kevin完成签到,获得积分10
2分钟前
2分钟前
blue2021发布了新的文献求助10
2分钟前
诗筠完成签到 ,获得积分10
2分钟前
2分钟前
ElsaFan完成签到,获得积分10
2分钟前
Chloe完成签到 ,获得积分10
2分钟前
3分钟前
现代水蓉完成签到 ,获得积分10
3分钟前
开心的寄容完成签到,获得积分20
3分钟前
万能图书馆应助温暖砖头采纳,获得10
3分钟前
3分钟前
谦让雨安完成签到,获得积分10
3分钟前
谦让雨安发布了新的文献求助10
3分钟前
whogun应助Marciu33采纳,获得10
4分钟前
perfumei完成签到,获得积分10
4分钟前
4分钟前
perfumei发布了新的文献求助20
4分钟前
leave完成签到 ,获得积分10
4分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303216
求助须知:如何正确求助?哪些是违规求助? 2937559
关于积分的说明 8482383
捐赠科研通 2611428
什么是DOI,文献DOI怎么找? 1425859
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 646943