Deep learning model for person identification and verification on low illumination images

人工智能 计算机科学 计算机视觉 鉴定(生物学) 深度学习 转化(遗传学) 伽马校正 图像(数学) 亮度 模式识别(心理学) 光学 生物化学 化学 植物 物理 生物 基因
作者
Suresh Tommandru,S. Domnic
出处
期刊:Journal of Electronic Imaging [SPIE]
卷期号:31 (06) 被引量:1
标识
DOI:10.1117/1.jei.31.6.062009
摘要

Performances of the deep learning models for person identification and verification are degraded on low illumination images due to the generated facial embeddings being unable to be matched with the trained good illumination facial embeddings. Person verification on low illumination images is a challenging task. The existing techniques have adopted an approach of enhancing the low illumination images and performing the person verification in the enhanced images. But these techniques have not achieved satisfactory results, because the gamma value is kept constant in the power law intensity transformation function to enhance the images. To obtain better performance, we propose a deep learning-based framework that consists of a contrast enhancement module, called as contrast enhancement network (CENet); person identification; and person verification modules. The CENet is built based on the residual network, which predicts the gamma value based on the illumination of the input image. The predicted value is used to perform gamma correction on the image to improve the brightness difference between the faces and their background, whereas the existing techniques are keeping the gamma value as constant for image enhancement. After performing the image enhancement, the enhanced image is given as input to the person identification module. Then the detected faces are verified by the person verification module. Experimental results show that the proposed framework has achieved an improvement of 3.4% to 13% in person identification and verification accuracy on the extended yale face dataset to the existing methods.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
再睡一夏完成签到,获得积分10
1秒前
坦率的凉面完成签到,获得积分10
2秒前
3秒前
曹沛岚完成签到,获得积分10
4秒前
4秒前
背后的大侠完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
老杨完成签到,获得积分10
5秒前
ZS0901发布了新的文献求助10
5秒前
科研通AI5应助miao采纳,获得10
6秒前
wangchangli完成签到,获得积分10
6秒前
ghost发布了新的文献求助10
6秒前
科研通AI2S应助sjfczyh采纳,获得10
7秒前
andrewyu发布了新的文献求助10
7秒前
7秒前
酷波er应助笑点低的发夹采纳,获得10
7秒前
小二郎应助酷酷伟宸采纳,获得10
8秒前
dsf发布了新的文献求助10
8秒前
9秒前
今晚打老虎完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
10秒前
沉默便当完成签到,获得积分10
10秒前
科研通AI5应助wwc采纳,获得10
10秒前
Jasper应助杨老板采纳,获得10
10秒前
11秒前
11秒前
幽默胜发布了新的文献求助10
11秒前
123完成签到,获得积分10
11秒前
辞树完成签到,获得积分10
11秒前
12秒前
12秒前
Ees发布了新的文献求助10
12秒前
13秒前
13秒前
小蘑菇应助默默的天亦采纳,获得10
13秒前
科研通AI5应助wodel采纳,获得10
14秒前
张姐发布了新的文献求助10
16秒前
冷艳的寒天完成签到,获得积分10
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
The Insulin Resistance Epidemic: Uncovering the Root Cause of Chronic Disease  500
Walter Gilbert: Selected Works 500
An Annotated Checklist of Dinosaur Species by Continent 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3662898
求助须知:如何正确求助?哪些是违规求助? 3223698
关于积分的说明 9752620
捐赠科研通 2933587
什么是DOI,文献DOI怎么找? 1606194
邀请新用户注册赠送积分活动 758307
科研通“疑难数据库(出版商)”最低求助积分说明 734775