清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Online autonomous calibration of digital twins using machine learning with application to nuclear power plants

校准 计算机科学 核电站 能量(信号处理) 实时计算 核能 聚类分析 模拟 人工智能 生态学 数学 生物 统计 物理 核物理学
作者
Houde Song,Meiqi Song,Xiaojing Liu
出处
期刊:Applied Energy [Elsevier BV]
卷期号:326: 119995-119995 被引量:38
标识
DOI:10.1016/j.apenergy.2022.119995
摘要

As a near-zero carbon emission energy source, nuclear energy plays an important role in the current world energy decarbonization scenario. Digital twin is a key technology for the continued development of nuclear energy applications. The digital twin requires real-time, high-precision simulations that are beyond the capabilities of current nuclear energy system simulation programs. Therefore, this study proposes an autonomous calibration method for the digital twin of nuclear power plants to compensate for the error in the results of the low accuracy digital twin that can run quickly to obtain higher accuracy results to meet both high accuracy and real-time requirements. The proposed method consists of offline and online stages. In the offline stage, digital twin simulations are first performed. The simulated data and corresponding measurements data (or real data) are used to build an error database, which will be used for the next step of data-driven model training. To reduce the complexity of calibration model, the error database samples are then grouped by clustering. Data-driven calibration models are built on each group based on the simulated data and errors. In the online stage, the digital twin runs in parallel with the nuclear power plant and receives real-time data. The calibration model is continuously updated using dynamic error database. The feasibility of the new proposed method has been demonstrated on measured data from the PKLIII B3.1 steam generator pipe rupture (SGTR) experiment. The results showed that the physical quantities such as pressure, temperature and mass flow rate were well calibrated during the 1000 s of parallel running. The R2 of all physical quantities including temperature, flow rate, and pressure are above 0.99.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
机智咖啡豆完成签到 ,获得积分10
5秒前
7秒前
wmuzhao发布了新的文献求助10
12秒前
13秒前
华仔应助科研通管家采纳,获得10
36秒前
36秒前
40秒前
六一儿童节完成签到 ,获得积分10
44秒前
六一完成签到 ,获得积分10
49秒前
醋溜荧光大蒜完成签到 ,获得积分10
54秒前
lhl发布了新的文献求助10
1分钟前
lhl完成签到,获得积分10
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
胖小羊完成签到 ,获得积分10
1分钟前
吕佳完成签到 ,获得积分10
2分钟前
Sew东坡完成签到,获得积分10
2分钟前
2分钟前
Perry完成签到,获得积分10
2分钟前
顾矜应助mimosal采纳,获得10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
4分钟前
无悔完成签到 ,获得积分10
4分钟前
4分钟前
mimosal发布了新的文献求助10
4分钟前
4分钟前
Liufgui应助科研通管家采纳,获得20
4分钟前
Liufgui应助科研通管家采纳,获得20
4分钟前
量子星尘发布了新的文献求助10
4分钟前
lilylian完成签到,获得积分10
4分钟前
4分钟前
糟糕的翅膀完成签到,获得积分10
5分钟前
5分钟前
5分钟前
玩命做研究完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
碗碗豆喵完成签到 ,获得积分10
6分钟前
壮观的谷冬完成签到 ,获得积分0
6分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008493
求助须知:如何正确求助?哪些是违规求助? 3548198
关于积分的说明 11298711
捐赠科研通 3282912
什么是DOI,文献DOI怎么找? 1810274
邀请新用户注册赠送积分活动 885976
科研通“疑难数据库(出版商)”最低求助积分说明 811209