Online autonomous calibration of digital twins using machine learning with application to nuclear power plants

校准 计算机科学 核电站 能量(信号处理) 实时计算 核能 聚类分析 模拟 人工智能 生态学 数学 生物 统计 物理 核物理学
作者
Houde Song,Meiqi Song,Xiaojing Liu
出处
期刊:Applied Energy [Elsevier]
卷期号:326: 119995-119995 被引量:38
标识
DOI:10.1016/j.apenergy.2022.119995
摘要

As a near-zero carbon emission energy source, nuclear energy plays an important role in the current world energy decarbonization scenario. Digital twin is a key technology for the continued development of nuclear energy applications. The digital twin requires real-time, high-precision simulations that are beyond the capabilities of current nuclear energy system simulation programs. Therefore, this study proposes an autonomous calibration method for the digital twin of nuclear power plants to compensate for the error in the results of the low accuracy digital twin that can run quickly to obtain higher accuracy results to meet both high accuracy and real-time requirements. The proposed method consists of offline and online stages. In the offline stage, digital twin simulations are first performed. The simulated data and corresponding measurements data (or real data) are used to build an error database, which will be used for the next step of data-driven model training. To reduce the complexity of calibration model, the error database samples are then grouped by clustering. Data-driven calibration models are built on each group based on the simulated data and errors. In the online stage, the digital twin runs in parallel with the nuclear power plant and receives real-time data. The calibration model is continuously updated using dynamic error database. The feasibility of the new proposed method has been demonstrated on measured data from the PKLIII B3.1 steam generator pipe rupture (SGTR) experiment. The results showed that the physical quantities such as pressure, temperature and mass flow rate were well calibrated during the 1000 s of parallel running. The R2 of all physical quantities including temperature, flow rate, and pressure are above 0.99.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
大模型应助chawenxian2025采纳,获得10
1秒前
你好完成签到 ,获得积分10
1秒前
Ruilin完成签到 ,获得积分10
1秒前
2秒前
CHEN发布了新的文献求助10
3秒前
Hello应助科研通管家采纳,获得20
3秒前
852应助科研通管家采纳,获得10
3秒前
斯文败类应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
Owen应助Hannah17采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
rosalieshi应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
小星星应助科研通管家采纳,获得10
4秒前
CipherSage应助科研通管家采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得10
4秒前
深情安青应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
4秒前
彭于彦祖应助科研通管家采纳,获得30
4秒前
4秒前
4秒前
4秒前
4秒前
赘婿应助儒雅沛凝采纳,获得30
5秒前
老李完成签到,获得积分10
6秒前
biackgao完成签到,获得积分10
6秒前
naplzp发布了新的文献求助10
6秒前
ChenLi完成签到,获得积分10
6秒前
学渣完成签到,获得积分10
7秒前
wsf发布了新的文献求助10
7秒前
微笑夏瑶发布了新的文献求助10
8秒前
小C发布了新的文献求助10
8秒前
lpj完成签到,获得积分10
8秒前
Jasper应助小太阳红红火火采纳,获得10
8秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151531
求助须知:如何正确求助?哪些是违规求助? 2802910
关于积分的说明 7851162
捐赠科研通 2460322
什么是DOI,文献DOI怎么找? 1309707
科研通“疑难数据库(出版商)”最低求助积分说明 628997
版权声明 601760