清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Online autonomous calibration of digital twins using machine learning with application to nuclear power plants

校准 计算机科学 核电站 能量(信号处理) 实时计算 核能 聚类分析 模拟 人工智能 生态学 统计 物理 数学 生物 核物理学
作者
Houde Song,Meiqi Song,Xiaojing Liu
出处
期刊:Applied Energy [Elsevier]
卷期号:326: 119995-119995 被引量:38
标识
DOI:10.1016/j.apenergy.2022.119995
摘要

As a near-zero carbon emission energy source, nuclear energy plays an important role in the current world energy decarbonization scenario. Digital twin is a key technology for the continued development of nuclear energy applications. The digital twin requires real-time, high-precision simulations that are beyond the capabilities of current nuclear energy system simulation programs. Therefore, this study proposes an autonomous calibration method for the digital twin of nuclear power plants to compensate for the error in the results of the low accuracy digital twin that can run quickly to obtain higher accuracy results to meet both high accuracy and real-time requirements. The proposed method consists of offline and online stages. In the offline stage, digital twin simulations are first performed. The simulated data and corresponding measurements data (or real data) are used to build an error database, which will be used for the next step of data-driven model training. To reduce the complexity of calibration model, the error database samples are then grouped by clustering. Data-driven calibration models are built on each group based on the simulated data and errors. In the online stage, the digital twin runs in parallel with the nuclear power plant and receives real-time data. The calibration model is continuously updated using dynamic error database. The feasibility of the new proposed method has been demonstrated on measured data from the PKLIII B3.1 steam generator pipe rupture (SGTR) experiment. The results showed that the physical quantities such as pressure, temperature and mass flow rate were well calibrated during the 1000 s of parallel running. The R2 of all physical quantities including temperature, flow rate, and pressure are above 0.99.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
shhoing应助科研通管家采纳,获得10
11秒前
Ajay完成签到 ,获得积分10
11秒前
Klaus完成签到 ,获得积分10
12秒前
胖小羊完成签到 ,获得积分10
46秒前
方白秋完成签到,获得积分0
1分钟前
1分钟前
Ajay发布了新的文献求助30
1分钟前
CipherSage应助丽海张采纳,获得30
1分钟前
赵一完成签到 ,获得积分10
1分钟前
1分钟前
Prometheusss发布了新的文献求助10
1分钟前
丽海张发布了新的文献求助30
1分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
英姑应助科研通管家采纳,获得10
2分钟前
zsmj23完成签到 ,获得积分0
2分钟前
文静身边充满小确幸完成签到 ,获得积分10
2分钟前
2分钟前
Prometheusss发布了新的文献求助10
2分钟前
Prometheusss完成签到,获得积分10
2分钟前
3分钟前
深海理疗发布了新的文献求助10
3分钟前
al完成签到 ,获得积分0
3分钟前
Prometheusss发布了新的文献求助10
3分钟前
下文献的蜉蝣完成签到 ,获得积分10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
shhoing应助科研通管家采纳,获得10
4分钟前
科研通AI2S应助科研通管家采纳,获得10
4分钟前
洁净百川完成签到 ,获得积分10
4分钟前
4分钟前
Prometheusss发布了新的文献求助10
4分钟前
fufufu123完成签到 ,获得积分10
5分钟前
nuoberry发布了新的文献求助30
5分钟前
景安白完成签到 ,获得积分10
5分钟前
5分钟前
nuoberry发布了新的文献求助10
5分钟前
科研通AI2S应助景安白采纳,获得30
6分钟前
田様应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
shhoing应助科研通管家采纳,获得10
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5561583
求助须知:如何正确求助?哪些是违规求助? 4646662
关于积分的说明 14678756
捐赠科研通 4588002
什么是DOI,文献DOI怎么找? 2517261
邀请新用户注册赠送积分活动 1490549
关于科研通互助平台的介绍 1461583