Online autonomous calibration of digital twins using machine learning with application to nuclear power plants

校准 计算机科学 核电站 能量(信号处理) 实时计算 核能 聚类分析 模拟 人工智能 生态学 数学 生物 统计 物理 核物理学
作者
Houde Song,Meiqi Song,Xiaojing Liu
出处
期刊:Applied Energy [Elsevier]
卷期号:326: 119995-119995 被引量:38
标识
DOI:10.1016/j.apenergy.2022.119995
摘要

As a near-zero carbon emission energy source, nuclear energy plays an important role in the current world energy decarbonization scenario. Digital twin is a key technology for the continued development of nuclear energy applications. The digital twin requires real-time, high-precision simulations that are beyond the capabilities of current nuclear energy system simulation programs. Therefore, this study proposes an autonomous calibration method for the digital twin of nuclear power plants to compensate for the error in the results of the low accuracy digital twin that can run quickly to obtain higher accuracy results to meet both high accuracy and real-time requirements. The proposed method consists of offline and online stages. In the offline stage, digital twin simulations are first performed. The simulated data and corresponding measurements data (or real data) are used to build an error database, which will be used for the next step of data-driven model training. To reduce the complexity of calibration model, the error database samples are then grouped by clustering. Data-driven calibration models are built on each group based on the simulated data and errors. In the online stage, the digital twin runs in parallel with the nuclear power plant and receives real-time data. The calibration model is continuously updated using dynamic error database. The feasibility of the new proposed method has been demonstrated on measured data from the PKLIII B3.1 steam generator pipe rupture (SGTR) experiment. The results showed that the physical quantities such as pressure, temperature and mass flow rate were well calibrated during the 1000 s of parallel running. The R2 of all physical quantities including temperature, flow rate, and pressure are above 0.99.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Nwafu发布了新的文献求助30
刚刚
脑洞疼应助刘天义采纳,获得10
刚刚
chiien完成签到 ,获得积分10
1秒前
英姑应助登登采纳,获得10
1秒前
长风发布了新的文献求助10
1秒前
JACS发布了新的文献求助10
1秒前
2秒前
2秒前
Zoe发布了新的文献求助30
3秒前
量子星尘发布了新的文献求助10
3秒前
小米粥发布了新的文献求助10
3秒前
一个白鑫发布了新的文献求助10
3秒前
FABLE完成签到 ,获得积分10
4秒前
5秒前
5秒前
123a应助djbj2022采纳,获得10
5秒前
5秒前
5秒前
7秒前
桐桐应助王肖宁采纳,获得10
7秒前
7秒前
7秒前
8秒前
小膘膘完成签到,获得积分10
8秒前
8秒前
感动冰海完成签到,获得积分10
9秒前
9秒前
10秒前
Adrian发布了新的文献求助10
10秒前
田様应助yther采纳,获得10
10秒前
小孙完成签到,获得积分10
10秒前
SciGPT应助亦玉采纳,获得10
10秒前
10秒前
10秒前
LLL完成签到,获得积分10
11秒前
wwww完成签到,获得积分10
12秒前
max发布了新的文献求助10
12秒前
香蕉如曼发布了新的文献求助10
12秒前
liugg发布了新的文献求助10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
按地区划分的1,091个公共养老金档案列表 801
Work, Vacation and Well-being 500
A Guide to Genetic Counseling, 3rd Edition 500
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Rural Geographies People, Place and the Countryside 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5410713
求助须知:如何正确求助?哪些是违规求助? 4528079
关于积分的说明 14114318
捐赠科研通 4442786
什么是DOI,文献DOI怎么找? 2438020
邀请新用户注册赠送积分活动 1430164
关于科研通互助平台的介绍 1408008