已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Online autonomous calibration of digital twins using machine learning with application to nuclear power plants

校准 计算机科学 核电站 能量(信号处理) 实时计算 核能 聚类分析 模拟 人工智能 生态学 统计 物理 数学 生物 核物理学
作者
Houde Song,Meiqi Song,Xiaojing Liu
出处
期刊:Applied Energy [Elsevier]
卷期号:326: 119995-119995 被引量:38
标识
DOI:10.1016/j.apenergy.2022.119995
摘要

As a near-zero carbon emission energy source, nuclear energy plays an important role in the current world energy decarbonization scenario. Digital twin is a key technology for the continued development of nuclear energy applications. The digital twin requires real-time, high-precision simulations that are beyond the capabilities of current nuclear energy system simulation programs. Therefore, this study proposes an autonomous calibration method for the digital twin of nuclear power plants to compensate for the error in the results of the low accuracy digital twin that can run quickly to obtain higher accuracy results to meet both high accuracy and real-time requirements. The proposed method consists of offline and online stages. In the offline stage, digital twin simulations are first performed. The simulated data and corresponding measurements data (or real data) are used to build an error database, which will be used for the next step of data-driven model training. To reduce the complexity of calibration model, the error database samples are then grouped by clustering. Data-driven calibration models are built on each group based on the simulated data and errors. In the online stage, the digital twin runs in parallel with the nuclear power plant and receives real-time data. The calibration model is continuously updated using dynamic error database. The feasibility of the new proposed method has been demonstrated on measured data from the PKLIII B3.1 steam generator pipe rupture (SGTR) experiment. The results showed that the physical quantities such as pressure, temperature and mass flow rate were well calibrated during the 1000 s of parallel running. The R2 of all physical quantities including temperature, flow rate, and pressure are above 0.99.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
点点点发布了新的文献求助10
1秒前
Ericlee发布了新的文献求助20
4秒前
在水一方应助欣喜的忆秋采纳,获得10
6秒前
7秒前
小巧从凝完成签到,获得积分10
7秒前
小锋完成签到 ,获得积分10
8秒前
wanci应助wonder123采纳,获得10
8秒前
可爱的函函应助xiaohan采纳,获得10
9秒前
10秒前
12秒前
浮游应助肯瑞恩哭哭采纳,获得10
14秒前
赵暖橙完成签到,获得积分20
16秒前
18秒前
英俊的铭应助茶蛋采纳,获得10
19秒前
赵暖橙发布了新的文献求助10
19秒前
一只西瓜茶完成签到,获得积分20
21秒前
沐沐心完成签到 ,获得积分10
21秒前
小贝是乌龟完成签到,获得积分10
22秒前
23秒前
丰富的泥猴桃完成签到 ,获得积分10
24秒前
JamesPei应助花花采纳,获得10
26秒前
linliqing发布了新的文献求助10
26秒前
谨慎鞅完成签到,获得积分10
27秒前
28秒前
共享精神应助赵暖橙采纳,获得10
29秒前
29秒前
30秒前
30秒前
无头骑士完成签到,获得积分10
30秒前
爆米花应助Ericlee采纳,获得10
31秒前
haixia发布了新的文献求助10
31秒前
嘿嘿发布了新的文献求助10
32秒前
上善若水完成签到 ,获得积分10
32秒前
我是老大应助小巧从凝采纳,获得10
33秒前
xiaohan发布了新的文献求助10
35秒前
35秒前
Ericlee完成签到,获得积分20
35秒前
37秒前
PYX关闭了PYX文献求助
40秒前
41秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
复杂系统建模与弹性模型研究 2000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1021
睡眠呼吸障碍治疗学 600
Input 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5488164
求助须知:如何正确求助?哪些是违规求助? 4587147
关于积分的说明 14412777
捐赠科研通 4518367
什么是DOI,文献DOI怎么找? 2475721
邀请新用户注册赠送积分活动 1461367
关于科研通互助平台的介绍 1434263