Online autonomous calibration of digital twins using machine learning with application to nuclear power plants

校准 计算机科学 核电站 能量(信号处理) 实时计算 核能 聚类分析 模拟 人工智能 生态学 统计 物理 数学 生物 核物理学
作者
Houde Song,Meiqi Song,Xiaojing Liu
出处
期刊:Applied Energy [Elsevier]
卷期号:326: 119995-119995 被引量:92
标识
DOI:10.1016/j.apenergy.2022.119995
摘要

As a near-zero carbon emission energy source, nuclear energy plays an important role in the current world energy decarbonization scenario. Digital twin is a key technology for the continued development of nuclear energy applications. The digital twin requires real-time, high-precision simulations that are beyond the capabilities of current nuclear energy system simulation programs. Therefore, this study proposes an autonomous calibration method for the digital twin of nuclear power plants to compensate for the error in the results of the low accuracy digital twin that can run quickly to obtain higher accuracy results to meet both high accuracy and real-time requirements. The proposed method consists of offline and online stages. In the offline stage, digital twin simulations are first performed. The simulated data and corresponding measurements data (or real data) are used to build an error database, which will be used for the next step of data-driven model training. To reduce the complexity of calibration model, the error database samples are then grouped by clustering. Data-driven calibration models are built on each group based on the simulated data and errors. In the online stage, the digital twin runs in parallel with the nuclear power plant and receives real-time data. The calibration model is continuously updated using dynamic error database. The feasibility of the new proposed method has been demonstrated on measured data from the PKLIII B3.1 steam generator pipe rupture (SGTR) experiment. The results showed that the physical quantities such as pressure, temperature and mass flow rate were well calibrated during the 1000 s of parallel running. The R2 of all physical quantities including temperature, flow rate, and pressure are above 0.99.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lanbing802完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
3秒前
有魅力草丛关注了科研通微信公众号
3秒前
wcuzhl完成签到,获得积分10
4秒前
5秒前
Bobi完成签到 ,获得积分10
5秒前
与离完成签到 ,获得积分10
6秒前
yuan完成签到,获得积分10
6秒前
给我打只山鹰吧完成签到,获得积分10
9秒前
biye完成签到 ,获得积分10
9秒前
GQ完成签到,获得积分10
9秒前
开心的若烟完成签到,获得积分10
10秒前
rtqprit完成签到,获得积分10
10秒前
10秒前
zzz完成签到 ,获得积分10
10秒前
纳兰嫣然完成签到,获得积分10
10秒前
赵坤煊完成签到 ,获得积分10
11秒前
11秒前
Ada完成签到 ,获得积分10
12秒前
暴躁的海ge完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
life的半边天完成签到 ,获得积分10
12秒前
15秒前
淳于忆曼完成签到 ,获得积分10
15秒前
Fashioner8351完成签到,获得积分10
16秒前
莫愁完成签到,获得积分10
16秒前
17秒前
甘地发布了新的文献求助10
17秒前
搜集达人应助LY采纳,获得10
18秒前
朱哥永正完成签到,获得积分10
19秒前
道道sy完成签到,获得积分10
22秒前
庄默羽完成签到,获得积分10
23秒前
量子星尘发布了新的文献求助10
23秒前
kevin_kong完成签到,获得积分10
23秒前
甘地完成签到,获得积分10
24秒前
xiaoliu完成签到,获得积分10
25秒前
小凤姑娘完成签到,获得积分10
26秒前
lmx完成签到,获得积分20
26秒前
我是老大应助傅家庆采纳,获得10
27秒前
耍酷的雪糕完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773484
求助须知:如何正确求助?哪些是违规求助? 5611745
关于积分的说明 15431379
捐赠科研通 4905949
什么是DOI,文献DOI怎么找? 2639966
邀请新用户注册赠送积分活动 1587841
关于科研通互助平台的介绍 1542900