Deep learning for automated epileptiform discharge detection from scalp EEG: A systematic review

计算机科学 人工智能 机器学习 深度学习 自编码 卷积神经网络 发作性 预处理器 脑电图 模式识别(心理学) 医学 精神科
作者
Duong Nhu,Mubeen Janmohamed,Ana Antonic‐Baker,Piero Perucca,Terence J. O’Brien,Amanda Gilligan,Patrick Kwan,Chang Wei Tan,Levin Kuhlmann
出处
期刊:Journal of Neural Engineering [IOP Publishing]
卷期号:19 (5): 051002-051002 被引量:15
标识
DOI:10.1088/1741-2552/ac9644
摘要

Abstract Automated interictal epileptiform discharge (IED) detection has been widely studied, with machine learning methods at the forefront in recent years. As computational resources become more accessible, researchers have applied deep learning (DL) to IED detection with promising results. This systematic review aims to provide an overview of the current DL approaches to automated IED detection from scalp electroencephalography (EEG) and establish recommendations for the clinical research community. We conduct a systematic review according to the PRISMA guidelines. We searched for studies published between 2012 and 2022 implementing DL for automating IED detection from scalp EEG in major medical and engineering databases. We highlight trends and formulate recommendations for the research community by analyzing various aspects: data properties, preprocessing methods, DL architectures, evaluation metrics and results, and reproducibility. The search yielded 66 studies, and 23 met our inclusion criteria. There were two main DL networks, convolutional neural networks in 14 studies and long short-term memory networks in three studies. A hybrid approach combining a hidden Markov model with an autoencoder was employed in one study. Graph convolutional network was seen in one study, which considered a montage as a graph. All DL models involved supervised learning. The median number of layers was 9 (IQR: 5–21). The median number of IEDs was 11 631 (IQR: 2663–16 402). Only six studies acquired data from multiple clinical centers. AUC was the most reported metric (median: 0.94; IQR: 0.94–0.96). The application of DL to IED detection is still limited and lacks standardization in data collection, multi-center testing, and reporting of clinically relevant metrics (i.e. F1, AUCPR, and false-positive/minute). However, the performance is promising, suggesting that DL might be a helpful approach. Further testing on multiple datasets from different clinical centers is required to confirm the generalizability of these methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
传统的妖妖完成签到,获得积分20
刚刚
xiaosun完成签到,获得积分0
1秒前
2秒前
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
研友_VZG7GZ应助科研通管家采纳,获得10
3秒前
不配.应助科研通管家采纳,获得30
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
在水一方应助科研通管家采纳,获得10
3秒前
3秒前
Hello应助科研通管家采纳,获得10
3秒前
深情安青应助yiding采纳,获得10
4秒前
香蕉梨愁完成签到,获得积分10
7秒前
9秒前
DKL完成签到,获得积分10
11秒前
12秒前
12秒前
飘逸的麦片完成签到,获得积分10
14秒前
14秒前
downdowndown发布了新的文献求助10
14秒前
15秒前
surong发布了新的文献求助10
15秒前
星星发布了新的文献求助10
17秒前
19秒前
大个应助健康的绮晴采纳,获得10
20秒前
FashionBoy应助Xiexie采纳,获得10
21秒前
wjw发布了新的文献求助10
24秒前
24秒前
Tracy麦子完成签到,获得积分10
26秒前
nanonamo发布了新的文献求助10
30秒前
yiding发布了新的文献求助10
31秒前
酷波er应助bly采纳,获得30
32秒前
葳葳发布了新的文献求助10
32秒前
starofjlu应助金丝铁线采纳,获得30
34秒前
顺心安荷完成签到,获得积分20
35秒前
元问晴完成签到,获得积分10
36秒前
39秒前
39秒前
调皮的又菱完成签到,获得积分10
39秒前
bly完成签到,获得积分20
40秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155850
求助须知:如何正确求助?哪些是违规求助? 2807060
关于积分的说明 7871807
捐赠科研通 2465463
什么是DOI,文献DOI怎么找? 1312240
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905