亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Morphological Brain Networks of White Matter: Mapping, Evaluation, Characterization, and Application

白质 神经科学 连接体 前脑 协方差 生物 计算机科学 磁共振成像 功能连接 医学 数学 中枢神经系统 统计 放射科
作者
Junle Li,Suhui Jin,Zhen Li,Xiangli Zeng,Yuping Yang,Zhenzhen Luo,Xiaoyu Xu,Zaixu Cui,Yaou Liu,Jinhui Wang
出处
期刊:Advanced Science [Wiley]
被引量:6
标识
DOI:10.1002/advs.202400061
摘要

Although white matter (WM) accounts for nearly half of adult brain, its wiring diagram is largely unknown. Here, an approach is developed to construct WM networks by estimating interregional morphological similarity based on structural magnetic resonance imaging. It is found that morphological WM networks showed nontrivial topology, presented good-to-excellent test-retest reliability, accounted for phenotypic interindividual differences in cognition, and are under genetic control. Through integration with multimodal and multiscale data, it is further showed that morphological WM networks are able to predict the patterns of hamodynamic coherence, metabolic synchronization, gene co-expression, and chemoarchitectonic covariance, and associated with structural connectivity. Moreover, the prediction followed WM functional connectomic hierarchy for the hamodynamic coherence, is related to genes enriched in the forebrain neuron development and differentiation for the gene co-expression, and is associated with serotonergic system-related receptors and transporters for the chemoarchitectonic covariance. Finally, applying this approach to multiple sclerosis and neuromyelitis optica spectrum disorders, it is found that both diseases exhibited morphological dysconnectivity, which are correlated with clinical variables of patients and are able to diagnose and differentiate the diseases. Altogether, these findings indicate that morphological WM networks provide a reliable and biologically meaningful means to explore WM architecture in health and disease.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
cccxq发布了新的文献求助10
7秒前
仙人不指路完成签到 ,获得积分10
11秒前
CodeCraft应助cccxq采纳,获得10
11秒前
FashionBoy应助橱窗采纳,获得10
13秒前
18秒前
dax大雄完成签到 ,获得积分10
21秒前
22秒前
科研小新发布了新的文献求助10
23秒前
橱窗完成签到,获得积分10
28秒前
28秒前
绿柏完成签到,获得积分10
28秒前
28秒前
Zq完成签到 ,获得积分10
29秒前
Petrichor完成签到,获得积分10
33秒前
Amber发布了新的文献求助10
34秒前
42秒前
赵赵发布了新的文献求助20
47秒前
47秒前
研友_VZG7GZ应助小玉采纳,获得10
49秒前
NexusExplorer应助小玉采纳,获得10
49秒前
领导范儿应助小玉采纳,获得10
49秒前
小圆圈发布了新的文献求助10
49秒前
JamesPei应助小玉采纳,获得10
49秒前
共享精神应助小玉采纳,获得10
49秒前
善学以致用应助小玉采纳,获得10
49秒前
华仔应助小玉采纳,获得10
49秒前
李健应助小玉采纳,获得10
49秒前
桐桐应助小玉采纳,获得10
49秒前
脑洞疼应助小玉采纳,获得10
50秒前
CQ发布了新的文献求助10
52秒前
搜集达人应助小玉采纳,获得10
59秒前
丘比特应助小玉采纳,获得10
59秒前
希望天下0贩的0应助小玉采纳,获得10
59秒前
Lucas应助小玉采纳,获得10
59秒前
田様应助小玉采纳,获得10
59秒前
丘比特应助小玉采纳,获得10
59秒前
隐形曼青应助小玉采纳,获得10
59秒前
脑洞疼应助小玉采纳,获得10
59秒前
香蕉觅云应助小玉采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exosomes Pipeline Insight, 2025 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5650648
求助须知:如何正确求助?哪些是违规求助? 4781203
关于积分的说明 15052447
捐赠科研通 4809531
什么是DOI,文献DOI怎么找? 2572337
邀请新用户注册赠送积分活动 1528474
关于科研通互助平台的介绍 1487332