Source Extent Estimation in OPM-MEG: A Two-Stage Champagne Approach

阶段(地层学) 估计 计算机科学 人工智能 脑磁图 计算机视觉 脑电图 地质学 工程类 医学 古生物学 系统工程 精神科
作者
Wen Li,Fuzhi Cao,Nan An,Wenli Wang,Chunhui Wang,Weinan Xu,Yang Gao,Xiaolin Ning
出处
期刊:IEEE Transactions on Medical Imaging [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:1
标识
DOI:10.1109/tmi.2024.3462415
摘要

The accurate estimation of source extent using magnetoencephalography (MEG) is important for the study of preoperative functional localization in epilepsy. Conventional source imaging techniques tend to produce diffuse or focused source estimates that fail to capture the source extent accurately. To address this issue, we propose a novel method called the two-stage Champagne approach (TS-Champagne). TS-Champagne divides source extent estimation into two stages. In the first stage, the Champagne algorithm with noise learning (Champagne-NL) is employed to obtain an initial source estimate. In the second stage, spatial basis functions are constructed from the initial source estimate. These spatial basis functions consist of potential activation source centers and their neighbors, and serve as spatial priors, which are incorporated into Champagne-NL to obtain a final source estimate. We evaluated the performance of TS-Champagne through numerical simulations. TS-Champagne achieved more robust performance under various conditions (i.e., varying source extent, number of sources, signal-to-noise level, and correlation coefficients between sources) than Champagne-NL and several benchmark methods. Furthermore, auditory and median nerve stimulation experiments were conducted using a 31-channel optically pumped magnetometer (OPM)-MEG system. The validation results indicated that the reconstructed source activity was spatially and temporally consistent with the neurophysiological results of previous OPM-MEG studies, further demonstrating the feasibility of TS-Champagne for practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
亭树完成签到,获得积分10
2秒前
cloudy90完成签到,获得积分10
2秒前
幽默冷梅完成签到,获得积分10
2秒前
十一发布了新的文献求助10
2秒前
3秒前
充电宝应助喜悦的皮卡丘采纳,获得10
4秒前
4秒前
YY发布了新的文献求助30
4秒前
shisui完成签到,获得积分10
5秒前
完美世界应助匆匆采纳,获得10
6秒前
zyy发布了新的文献求助10
7秒前
8秒前
鳗鱼三毒发布了新的文献求助10
9秒前
李昆朋发布了新的文献求助10
10秒前
10秒前
研友_Z119gZ完成签到 ,获得积分10
10秒前
12秒前
12秒前
12秒前
不插电发布了新的文献求助10
13秒前
14秒前
完美世界应助jinze采纳,获得10
15秒前
15秒前
15秒前
15秒前
Research完成签到 ,获得积分10
15秒前
英勇紊发布了新的文献求助10
16秒前
英俊的铭应助大鲨鱼采纳,获得10
16秒前
kxkx完成签到,获得积分10
16秒前
16秒前
Yaang发布了新的文献求助10
16秒前
李昆朋完成签到,获得积分10
16秒前
16秒前
请叫我风吹麦浪应助吴硫采纳,获得10
17秒前
无限雨南发布了新的文献求助10
18秒前
19秒前
scichu发布了新的文献求助10
19秒前
研友_VZG7GZ应助zyy采纳,获得30
20秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Time Matters: On Theory and Method 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3560126
求助须知:如何正确求助?哪些是违规求助? 3134333
关于积分的说明 9407006
捐赠科研通 2834465
什么是DOI,文献DOI怎么找? 1558136
邀请新用户注册赠送积分活动 727912
科研通“疑难数据库(出版商)”最低求助积分说明 716563