Antibody-SGM, a Score-Based Generative Model for Antibody Heavy-Chain Design

计算机科学 计算生物学 蛋白质设计 序列(生物学) 蛋白质工程 功能(生物学) 蛋白质结构 生物 遗传学 生物化学
作者
Xuezhi Xie,Pedro A. Valiente,Jin Sub Lee,Ji‐Sun Kim,Philip M. Kim
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c00711
摘要

Traditional computational methods for antibody design involved random mutagenesis followed by energy function assessment for candidate selection. Recently, diffusion models have garnered considerable attention as cutting-edge generative models, lauded for their remarkable performance. However, these methods often focus solely on the backbone or sequence, resulting in the incomplete depiction of the overall structure and necessitating additional techniques to predict the missing component. This study presents Antibody-SGM, an innovative joint structure-sequence diffusion model that addresses the limitations of existing protein backbone generation models. Unlike previous models, Antibody-SGM successfully integrates sequence-specific attributes and functional properties into the generation process. Our methodology generates full-atom native-like antibody heavy chains by refining the generation to create valid pairs of sequences and structures, starting with random sequences and structural properties. The versatility of our method is demonstrated through various applications, including the design of full-atom antibodies, antigen-specific CDR design, antibody heavy chains optimization, validation with Alphafold3, and the identification of crucial antibody sequences and structural features. Antibody-SGM also optimizes protein function through active inpainting learning, allowing simultaneous sequence and structure optimization. These improvements demonstrate the promise of our strategy for protein engineering and significantly increase the power of protein design models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿三德完成签到,获得积分20
1秒前
lala完成签到,获得积分20
2秒前
2秒前
3秒前
sdhgd发布了新的文献求助100
3秒前
钱俊发布了新的文献求助10
5秒前
6秒前
Y123发布了新的文献求助10
8秒前
9秒前
10秒前
王大壮完成签到,获得积分20
10秒前
10秒前
10秒前
10秒前
Dphile发布了新的文献求助10
12秒前
科研通AI2S应助1111chen采纳,获得10
13秒前
斯文明杰发布了新的文献求助10
13秒前
我家的二妮完成签到,获得积分20
13秒前
998877剑指完成签到,获得积分10
14秒前
灵巧语山发布了新的文献求助10
14秒前
沂静完成签到,获得积分10
14秒前
文小杰发布了新的文献求助10
15秒前
Orange应助专注灵凡采纳,获得10
15秒前
子车茗应助南南采纳,获得10
15秒前
隐形曼青应助YF采纳,获得10
16秒前
16秒前
Orange应助缚大哥采纳,获得10
16秒前
茶多酚完成签到,获得积分10
17秒前
17秒前
Lucas应助木四点采纳,获得10
18秒前
嗖嗖发布了新的文献求助10
19秒前
21秒前
22秒前
传奇3应助快乐的凡霜采纳,获得10
22秒前
爱吃麻辣烫应助光亮友安采纳,获得10
23秒前
23秒前
25秒前
26秒前
momo完成签到,获得积分20
27秒前
似水流年完成签到,获得积分10
27秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149519
求助须知:如何正确求助?哪些是违规求助? 2800571
关于积分的说明 7840676
捐赠科研通 2458112
什么是DOI,文献DOI怎么找? 1308279
科研通“疑难数据库(出版商)”最低求助积分说明 628471
版权声明 601706