已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Residual energy evaluation in vortex structures: On the application of machine learning models

残余物 支持向量机 人工智能 梯度升压 多元自适应回归样条 涡流 计算机科学 Boosting(机器学习) 阿达布思 弗劳德数 机器学习 液压头 数学 回归分析 工程类 算法 随机森林 机械 流量(数学) 几何学 贝叶斯多元线性回归 物理 岩土工程
作者
Mohammad Najafzadeh,Mohammad Mahmoudi-Rad
出处
期刊:Results in engineering [Elsevier]
卷期号:23: 102792-102792 被引量:5
标识
DOI:10.1016/j.rineng.2024.102792
摘要

Vortex structures are widely employed for energy dissipation in urban surface water conveyance systems. When transporting wastewater through these networks, a substantial amount of water energy is dissipated. The effectiveness of these structures is usually evaluated by their efficiency in dissipating energy. Recent literature reviews on vortex structures have emphasized that, despite numerous experimental studies aimed at assessing their hydraulic performance, a reliable mathematical model to predict the residual energy head ratio remains elusive. In this study, resilient numerical models employing Artificial Intelligence (AI) methodologies (such as non-parametric regression, decision trees, and ensemble learning) have been structured by reliable experimental tests. By analyzing the experiments, three primary factors, referred to as flow Froude number (Fr), the ratio of sump height (Hs) to shaft diameter (D), and the ratio of drop total height (L) to shaft diameter (D) were determined to estimate the residual energy head ratio. Through experimental study, the residual energy head ratio is computed as a ratio of downstream flow energy (E2) to upstream flow energy (E1) at vortex structure. During the training and testing phases of AI models, the results of statistical tests, serving as quantitative evaluations, have shown that ensemble learning models namely Adaptive Boosting (AdaBoost) and Categorical Boosting (CatBoost) models had higher level of efficiency in the E2/E1 predictions and followed by Model Tree (MT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Multivariate Adaptive Regression Spline (MARS). Additionally, the second-order regression-based equation was obtained from Fully Factorial Method (FFM) which had lower level of precision (R = 0.8275, RMSE = 0.1156, and MAE = 0.0846) in the residual energy head ratio predictions when compared with all predictive AI models. Variations of three effective factors (i.e., Fr, L/D, Hs/D) versus the predicted E2/E1 ratios were in well agreement with observational tests. Moreover, the results of Sobol's index indicated that Fr number was determined as the most effective parameter in the evaluation of residual energy head ratio in the vortex structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zizi完成签到 ,获得积分10
1秒前
1秒前
向南发布了新的文献求助10
1秒前
你好完成签到 ,获得积分10
1秒前
2秒前
Hello应助向南采纳,获得10
7秒前
酷波er应助抱抱龙采纳,获得10
8秒前
Natrual完成签到 ,获得积分10
8秒前
y13333完成签到,获得积分10
8秒前
Hello应助Laputa采纳,获得10
9秒前
科研通AI6应助小苹果采纳,获得10
9秒前
11秒前
江東完成签到 ,获得积分10
11秒前
着急的猴完成签到 ,获得积分10
12秒前
殷琛发布了新的文献求助10
13秒前
姜姜发布了新的文献求助10
15秒前
三石呦423发布了新的文献求助50
15秒前
15秒前
第二支羽毛完成签到,获得积分10
15秒前
16秒前
16秒前
抱抱龙发布了新的文献求助10
19秒前
碧蓝丹烟完成签到 ,获得积分10
20秒前
文静的海完成签到,获得积分10
20秒前
Yi羿完成签到 ,获得积分10
23秒前
ll完成签到 ,获得积分10
24秒前
高贵书兰完成签到 ,获得积分10
24秒前
24秒前
852应助学术蝗虫采纳,获得10
25秒前
六幺七完成签到 ,获得积分10
25秒前
26秒前
不与仙同完成签到 ,获得积分10
28秒前
xmsyq完成签到 ,获得积分10
29秒前
31秒前
科研通AI6应助三石呦423采纳,获得10
32秒前
昔年若许完成签到,获得积分10
34秒前
34秒前
李鹏辉完成签到 ,获得积分10
36秒前
37秒前
打打应助不拿拿采纳,获得10
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627596
求助须知:如何正确求助?哪些是违规求助? 4714216
关于积分的说明 14962790
捐赠科研通 4785168
什么是DOI,文献DOI怎么找? 2555019
邀请新用户注册赠送积分活动 1516447
关于科研通互助平台的介绍 1476819