Residual energy evaluation in vortex structures: On the application of machine learning models

残余物 支持向量机 人工智能 梯度升压 多元自适应回归样条 涡流 计算机科学 Boosting(机器学习) 阿达布思 弗劳德数 机器学习 液压头 数学 回归分析 工程类 算法 随机森林 机械 流量(数学) 几何学 贝叶斯多元线性回归 物理 岩土工程
作者
Mohammad Najafzadeh,Mohammad Mahmoudi-Rad
出处
期刊:Results in engineering [Elsevier]
卷期号:23: 102792-102792 被引量:5
标识
DOI:10.1016/j.rineng.2024.102792
摘要

Vortex structures are widely employed for energy dissipation in urban surface water conveyance systems. When transporting wastewater through these networks, a substantial amount of water energy is dissipated. The effectiveness of these structures is usually evaluated by their efficiency in dissipating energy. Recent literature reviews on vortex structures have emphasized that, despite numerous experimental studies aimed at assessing their hydraulic performance, a reliable mathematical model to predict the residual energy head ratio remains elusive. In this study, resilient numerical models employing Artificial Intelligence (AI) methodologies (such as non-parametric regression, decision trees, and ensemble learning) have been structured by reliable experimental tests. By analyzing the experiments, three primary factors, referred to as flow Froude number (Fr), the ratio of sump height (Hs) to shaft diameter (D), and the ratio of drop total height (L) to shaft diameter (D) were determined to estimate the residual energy head ratio. Through experimental study, the residual energy head ratio is computed as a ratio of downstream flow energy (E2) to upstream flow energy (E1) at vortex structure. During the training and testing phases of AI models, the results of statistical tests, serving as quantitative evaluations, have shown that ensemble learning models namely Adaptive Boosting (AdaBoost) and Categorical Boosting (CatBoost) models had higher level of efficiency in the E2/E1 predictions and followed by Model Tree (MT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Multivariate Adaptive Regression Spline (MARS). Additionally, the second-order regression-based equation was obtained from Fully Factorial Method (FFM) which had lower level of precision (R = 0.8275, RMSE = 0.1156, and MAE = 0.0846) in the residual energy head ratio predictions when compared with all predictive AI models. Variations of three effective factors (i.e., Fr, L/D, Hs/D) versus the predicted E2/E1 ratios were in well agreement with observational tests. Moreover, the results of Sobol's index indicated that Fr number was determined as the most effective parameter in the evaluation of residual energy head ratio in the vortex structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
1秒前
mine发布了新的文献求助10
1秒前
1秒前
yuxia发布了新的文献求助10
2秒前
2秒前
谷大喵唔完成签到,获得积分20
2秒前
暴躁的太阳完成签到,获得积分10
2秒前
研友_VZG7GZ应助大力的图图采纳,获得10
2秒前
噜噜发布了新的文献求助30
2秒前
默默芝麻完成签到,获得积分10
2秒前
4秒前
科研通AI6.1应助坚定芷卉采纳,获得10
5秒前
Dongsy完成签到,获得积分10
6秒前
6秒前
白白发布了新的文献求助10
7秒前
6666完成签到,获得积分10
7秒前
8秒前
8秒前
光亮白猫发布了新的文献求助10
9秒前
yuxia完成签到,获得积分20
9秒前
10秒前
彭于晏应助Yuanyuan采纳,获得10
10秒前
6666发布了新的文献求助10
13秒前
14秒前
Dongsy发布了新的文献求助10
14秒前
ccd发布了新的文献求助10
14秒前
陈宝关注了科研通微信公众号
15秒前
沉默的早晨完成签到,获得积分10
15秒前
轻松的千亦完成签到 ,获得积分10
16秒前
16秒前
16秒前
18秒前
19秒前
欢呼的飞荷完成签到 ,获得积分10
21秒前
嘟嘟嘟完成签到,获得积分10
22秒前
22发布了新的文献求助10
22秒前
23秒前
开心重要发布了新的文献求助10
23秒前
科目三应助bbllxyl采纳,获得10
24秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5745790
求助须知:如何正确求助?哪些是违规求助? 5428839
关于积分的说明 15354057
捐赠科研通 4885730
什么是DOI,文献DOI怎么找? 2626877
邀请新用户注册赠送积分活动 1575405
关于科研通互助平台的介绍 1532140