亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Residual energy evaluation in vortex structures: On the application of machine learning models

残余物 支持向量机 人工智能 梯度升压 多元自适应回归样条 涡流 计算机科学 Boosting(机器学习) 阿达布思 弗劳德数 机器学习 液压头 数学 回归分析 工程类 算法 随机森林 机械 流量(数学) 几何学 贝叶斯多元线性回归 物理 岩土工程
作者
Mohammad Najafzadeh,Mohammad Mahmoudi-Rad
出处
期刊:Results in engineering [Elsevier]
卷期号:23: 102792-102792 被引量:5
标识
DOI:10.1016/j.rineng.2024.102792
摘要

Vortex structures are widely employed for energy dissipation in urban surface water conveyance systems. When transporting wastewater through these networks, a substantial amount of water energy is dissipated. The effectiveness of these structures is usually evaluated by their efficiency in dissipating energy. Recent literature reviews on vortex structures have emphasized that, despite numerous experimental studies aimed at assessing their hydraulic performance, a reliable mathematical model to predict the residual energy head ratio remains elusive. In this study, resilient numerical models employing Artificial Intelligence (AI) methodologies (such as non-parametric regression, decision trees, and ensemble learning) have been structured by reliable experimental tests. By analyzing the experiments, three primary factors, referred to as flow Froude number (Fr), the ratio of sump height (Hs) to shaft diameter (D), and the ratio of drop total height (L) to shaft diameter (D) were determined to estimate the residual energy head ratio. Through experimental study, the residual energy head ratio is computed as a ratio of downstream flow energy (E2) to upstream flow energy (E1) at vortex structure. During the training and testing phases of AI models, the results of statistical tests, serving as quantitative evaluations, have shown that ensemble learning models namely Adaptive Boosting (AdaBoost) and Categorical Boosting (CatBoost) models had higher level of efficiency in the E2/E1 predictions and followed by Model Tree (MT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Multivariate Adaptive Regression Spline (MARS). Additionally, the second-order regression-based equation was obtained from Fully Factorial Method (FFM) which had lower level of precision (R = 0.8275, RMSE = 0.1156, and MAE = 0.0846) in the residual energy head ratio predictions when compared with all predictive AI models. Variations of three effective factors (i.e., Fr, L/D, Hs/D) versus the predicted E2/E1 ratios were in well agreement with observational tests. Moreover, the results of Sobol's index indicated that Fr number was determined as the most effective parameter in the evaluation of residual energy head ratio in the vortex structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
开朗白山完成签到,获得积分10
5秒前
顺颂时祺完成签到,获得积分20
14秒前
金晓完成签到,获得积分10
18秒前
顺颂时祺发布了新的文献求助10
22秒前
moumou完成签到 ,获得积分10
25秒前
所所应助ice采纳,获得10
26秒前
由道罡完成签到 ,获得积分10
26秒前
希望天下0贩的0应助annathd采纳,获得30
30秒前
annathd完成签到,获得积分10
37秒前
38秒前
加菲丰丰完成签到,获得积分0
39秒前
chenchen完成签到,获得积分10
42秒前
44秒前
思源应助lyy采纳,获得10
44秒前
annathd发布了新的文献求助30
45秒前
Ariel完成签到 ,获得积分10
46秒前
糖糖糖feng源完成签到,获得积分20
46秒前
49秒前
雨下一整晚完成签到 ,获得积分10
52秒前
55秒前
21145077发布了新的文献求助10
58秒前
FLY完成签到,获得积分10
1分钟前
lyy发布了新的文献求助10
1分钟前
73完成签到 ,获得积分10
1分钟前
小丸子和zz完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
1分钟前
AL完成签到,获得积分10
1分钟前
AL发布了新的文献求助10
1分钟前
橙子完成签到 ,获得积分10
1分钟前
1分钟前
ice发布了新的文献求助10
1分钟前
英勇明雪完成签到 ,获得积分10
1分钟前
一念莲花舟完成签到 ,获得积分10
1分钟前
wzm发布了新的文献求助10
2分钟前
团子发布了新的文献求助20
2分钟前
把饭拼好给你完成签到 ,获得积分10
2分钟前
ice完成签到,获得积分10
2分钟前
joysa完成签到,获得积分10
2分钟前
小马甲应助浪里白条采纳,获得10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634690
求助须知:如何正确求助?哪些是违规求助? 4731782
关于积分的说明 14988874
捐赠科研通 4792418
什么是DOI,文献DOI怎么找? 2559500
邀请新用户注册赠送积分活动 1519811
关于科研通互助平台的介绍 1479917