Residual energy evaluation in vortex structures: On the application of machine learning models

残余物 支持向量机 人工智能 梯度升压 多元自适应回归样条 涡流 计算机科学 Boosting(机器学习) 阿达布思 弗劳德数 机器学习 液压头 数学 回归分析 工程类 算法 随机森林 机械 流量(数学) 几何学 贝叶斯多元线性回归 物理 岩土工程
作者
Mohammad Najafzadeh,Mohammad Mahmoudi-Rad
出处
期刊:Results in engineering [Elsevier]
卷期号:23: 102792-102792 被引量:5
标识
DOI:10.1016/j.rineng.2024.102792
摘要

Vortex structures are widely employed for energy dissipation in urban surface water conveyance systems. When transporting wastewater through these networks, a substantial amount of water energy is dissipated. The effectiveness of these structures is usually evaluated by their efficiency in dissipating energy. Recent literature reviews on vortex structures have emphasized that, despite numerous experimental studies aimed at assessing their hydraulic performance, a reliable mathematical model to predict the residual energy head ratio remains elusive. In this study, resilient numerical models employing Artificial Intelligence (AI) methodologies (such as non-parametric regression, decision trees, and ensemble learning) have been structured by reliable experimental tests. By analyzing the experiments, three primary factors, referred to as flow Froude number (Fr), the ratio of sump height (Hs) to shaft diameter (D), and the ratio of drop total height (L) to shaft diameter (D) were determined to estimate the residual energy head ratio. Through experimental study, the residual energy head ratio is computed as a ratio of downstream flow energy (E2) to upstream flow energy (E1) at vortex structure. During the training and testing phases of AI models, the results of statistical tests, serving as quantitative evaluations, have shown that ensemble learning models namely Adaptive Boosting (AdaBoost) and Categorical Boosting (CatBoost) models had higher level of efficiency in the E2/E1 predictions and followed by Model Tree (MT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Multivariate Adaptive Regression Spline (MARS). Additionally, the second-order regression-based equation was obtained from Fully Factorial Method (FFM) which had lower level of precision (R = 0.8275, RMSE = 0.1156, and MAE = 0.0846) in the residual energy head ratio predictions when compared with all predictive AI models. Variations of three effective factors (i.e., Fr, L/D, Hs/D) versus the predicted E2/E1 ratios were in well agreement with observational tests. Moreover, the results of Sobol's index indicated that Fr number was determined as the most effective parameter in the evaluation of residual energy head ratio in the vortex structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
GG波波发布了新的文献求助10
1秒前
吴筮发布了新的文献求助10
1秒前
深情安青应助姜萌萌采纳,获得10
2秒前
niumi190完成签到,获得积分0
3秒前
11231发布了新的文献求助10
3秒前
斯文败类应助平淡夏云采纳,获得10
4秒前
gz发布了新的文献求助10
4秒前
5秒前
科研通AI6应助Shinchan采纳,获得10
5秒前
牛牛最棒完成签到 ,获得积分10
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
9秒前
小蘑菇应助wtldkz采纳,获得10
9秒前
默默的妙竹完成签到 ,获得积分10
9秒前
裴果发布了新的文献求助10
10秒前
Paul111发布了新的文献求助10
11秒前
12秒前
Jes发布了新的文献求助30
12秒前
14秒前
14秒前
李健应助昭蘅采纳,获得10
14秒前
轻松毒娘完成签到,获得积分10
15秒前
华仔应助吴筮采纳,获得10
16秒前
天天快乐应助合适孤兰采纳,获得10
18秒前
lucinda发布了新的文献求助10
19秒前
19秒前
Yonica完成签到,获得积分10
22秒前
橙子完成签到,获得积分10
22秒前
Gaojinyun完成签到,获得积分10
22秒前
gf完成签到,获得积分10
22秒前
谨慎的尔白完成签到,获得积分10
23秒前
王十三完成签到 ,获得积分10
24秒前
26秒前
28秒前
科研通AI6应助研友_LmAWYL采纳,获得10
28秒前
研友_VZG7GZ应助刘歌采纳,获得10
29秒前
yidi01完成签到,获得积分10
29秒前
30秒前
30秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5620874
求助须知:如何正确求助?哪些是违规求助? 4705521
关于积分的说明 14932362
捐赠科研通 4763666
什么是DOI,文献DOI怎么找? 2551356
邀请新用户注册赠送积分活动 1513817
关于科研通互助平台的介绍 1474715