Residual energy evaluation in vortex structures: On the application of machine learning models

残余物 支持向量机 人工智能 梯度升压 多元自适应回归样条 涡流 计算机科学 Boosting(机器学习) 阿达布思 弗劳德数 机器学习 液压头 数学 回归分析 工程类 算法 随机森林 机械 流量(数学) 几何学 贝叶斯多元线性回归 物理 岩土工程
作者
Mohammad Najafzadeh,Mohammad Mahmoudi-Rad
出处
期刊:Results in engineering [Elsevier BV]
卷期号:23: 102792-102792 被引量:5
标识
DOI:10.1016/j.rineng.2024.102792
摘要

Vortex structures are widely employed for energy dissipation in urban surface water conveyance systems. When transporting wastewater through these networks, a substantial amount of water energy is dissipated. The effectiveness of these structures is usually evaluated by their efficiency in dissipating energy. Recent literature reviews on vortex structures have emphasized that, despite numerous experimental studies aimed at assessing their hydraulic performance, a reliable mathematical model to predict the residual energy head ratio remains elusive. In this study, resilient numerical models employing Artificial Intelligence (AI) methodologies (such as non-parametric regression, decision trees, and ensemble learning) have been structured by reliable experimental tests. By analyzing the experiments, three primary factors, referred to as flow Froude number (Fr), the ratio of sump height (Hs) to shaft diameter (D), and the ratio of drop total height (L) to shaft diameter (D) were determined to estimate the residual energy head ratio. Through experimental study, the residual energy head ratio is computed as a ratio of downstream flow energy (E2) to upstream flow energy (E1) at vortex structure. During the training and testing phases of AI models, the results of statistical tests, serving as quantitative evaluations, have shown that ensemble learning models namely Adaptive Boosting (AdaBoost) and Categorical Boosting (CatBoost) models had higher level of efficiency in the E2/E1 predictions and followed by Model Tree (MT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Multivariate Adaptive Regression Spline (MARS). Additionally, the second-order regression-based equation was obtained from Fully Factorial Method (FFM) which had lower level of precision (R = 0.8275, RMSE = 0.1156, and MAE = 0.0846) in the residual energy head ratio predictions when compared with all predictive AI models. Variations of three effective factors (i.e., Fr, L/D, Hs/D) versus the predicted E2/E1 ratios were in well agreement with observational tests. Moreover, the results of Sobol's index indicated that Fr number was determined as the most effective parameter in the evaluation of residual energy head ratio in the vortex structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助好好学习采纳,获得10
刚刚
田様应助披日悬光采纳,获得10
刚刚
量子星尘发布了新的文献求助20
1秒前
脑洞疼应助星露谷老农采纳,获得30
1秒前
斯文败类应助liujia采纳,获得10
1秒前
爆米花应助Birdy采纳,获得10
2秒前
嘿嘿嘿发布了新的文献求助10
2秒前
清脆的初蝶完成签到 ,获得积分10
2秒前
17808352679发布了新的文献求助10
2秒前
2秒前
5秒前
飘逸灰狼完成签到 ,获得积分10
5秒前
七堇完成签到,获得积分10
5秒前
yyl发布了新的文献求助10
5秒前
源源发布了新的文献求助10
5秒前
谨慎三问完成签到 ,获得积分10
5秒前
6秒前
dropwater完成签到,获得积分10
6秒前
所所应助披日悬光采纳,获得10
7秒前
绿柏完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
17808352679完成签到,获得积分10
9秒前
9秒前
9秒前
10秒前
森林林林完成签到 ,获得积分10
10秒前
七堇发布了新的文献求助10
11秒前
鱼鱼色发布了新的文献求助10
11秒前
11秒前
WW完成签到,获得积分10
12秒前
12秒前
科目三应助Phoenix ZHANG采纳,获得10
12秒前
12秒前
充电宝应助小苏采纳,获得10
13秒前
13秒前
科目三应助若雨涵采纳,获得10
14秒前
量子星尘发布了新的文献求助20
14秒前
LF发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Feigin and Cherry's Textbook of Pediatric Infectious Diseases Ninth Edition 2024 4000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
青少年心理适应性量表(APAS)使用手册 700
Air Transportation A Global Management Perspective 9th Edition 700
Socialization In The Context Of The Family: Parent-Child Interaction 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5004355
求助须知:如何正确求助?哪些是违规求助? 4248536
关于积分的说明 13237242
捐赠科研通 4047837
什么是DOI,文献DOI怎么找? 2214525
邀请新用户注册赠送积分活动 1224520
关于科研通互助平台的介绍 1144998