Residual energy evaluation in vortex structures: On the application of machine learning models

残余物 支持向量机 人工智能 梯度升压 多元自适应回归样条 涡流 计算机科学 Boosting(机器学习) 阿达布思 弗劳德数 机器学习 液压头 数学 回归分析 工程类 算法 随机森林 机械 流量(数学) 几何学 贝叶斯多元线性回归 物理 岩土工程
作者
Mohammad Najafzadeh,Mohammad Mahmoudi-Rad
出处
期刊:Results in engineering [Elsevier]
卷期号:23: 102792-102792 被引量:5
标识
DOI:10.1016/j.rineng.2024.102792
摘要

Vortex structures are widely employed for energy dissipation in urban surface water conveyance systems. When transporting wastewater through these networks, a substantial amount of water energy is dissipated. The effectiveness of these structures is usually evaluated by their efficiency in dissipating energy. Recent literature reviews on vortex structures have emphasized that, despite numerous experimental studies aimed at assessing their hydraulic performance, a reliable mathematical model to predict the residual energy head ratio remains elusive. In this study, resilient numerical models employing Artificial Intelligence (AI) methodologies (such as non-parametric regression, decision trees, and ensemble learning) have been structured by reliable experimental tests. By analyzing the experiments, three primary factors, referred to as flow Froude number (Fr), the ratio of sump height (Hs) to shaft diameter (D), and the ratio of drop total height (L) to shaft diameter (D) were determined to estimate the residual energy head ratio. Through experimental study, the residual energy head ratio is computed as a ratio of downstream flow energy (E2) to upstream flow energy (E1) at vortex structure. During the training and testing phases of AI models, the results of statistical tests, serving as quantitative evaluations, have shown that ensemble learning models namely Adaptive Boosting (AdaBoost) and Categorical Boosting (CatBoost) models had higher level of efficiency in the E2/E1 predictions and followed by Model Tree (MT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Multivariate Adaptive Regression Spline (MARS). Additionally, the second-order regression-based equation was obtained from Fully Factorial Method (FFM) which had lower level of precision (R = 0.8275, RMSE = 0.1156, and MAE = 0.0846) in the residual energy head ratio predictions when compared with all predictive AI models. Variations of three effective factors (i.e., Fr, L/D, Hs/D) versus the predicted E2/E1 ratios were in well agreement with observational tests. Moreover, the results of Sobol's index indicated that Fr number was determined as the most effective parameter in the evaluation of residual energy head ratio in the vortex structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
关关完成签到 ,获得积分10
1秒前
1秒前
1秒前
2秒前
彪壮的三问完成签到,获得积分10
4秒前
5秒前
gjx完成签到,获得积分10
5秒前
7秒前
GHX完成签到 ,获得积分10
7秒前
李杰发布了新的文献求助10
8秒前
8秒前
Du完成签到,获得积分10
9秒前
朱泳钦完成签到,获得积分10
9秒前
9秒前
小蘑菇发布了新的文献求助10
9秒前
可爱的函函应助天真醉波采纳,获得10
10秒前
隐形的baby完成签到,获得积分10
11秒前
12秒前
话藏心发布了新的文献求助10
14秒前
正直的雅绿完成签到,获得积分10
14秒前
科研通AI6应助safari采纳,获得30
16秒前
16秒前
平常的老头完成签到,获得积分10
17秒前
ding应助Du采纳,获得10
17秒前
朱泳钦发布了新的文献求助10
18秒前
19秒前
量子星尘发布了新的文献求助10
19秒前
20秒前
21秒前
21秒前
GGMJ发布了新的文献求助10
21秒前
wxyshare应助自由的中蓝采纳,获得10
23秒前
23秒前
机智灯泡发布了新的文献求助10
25秒前
25秒前
852应助百羊采纳,获得10
25秒前
文静萤发布了新的文献求助10
26秒前
隐形的baby发布了新的文献求助10
26秒前
隐形曼青应助GGMJ采纳,获得10
26秒前
旺仔不甜完成签到,获得积分10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Current Trends in Drug Discovery, Development and Delivery (CTD4-2022) 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5536873
求助须知:如何正确求助?哪些是违规求助? 4624540
关于积分的说明 14592255
捐赠科研通 4564957
什么是DOI,文献DOI怎么找? 2502101
邀请新用户注册赠送积分活动 1480843
关于科研通互助平台的介绍 1452073