Residual energy evaluation in vortex structures: On the application of machine learning models

残余物 支持向量机 人工智能 梯度升压 多元自适应回归样条 涡流 计算机科学 Boosting(机器学习) 阿达布思 弗劳德数 机器学习 液压头 数学 回归分析 工程类 算法 随机森林 机械 流量(数学) 几何学 贝叶斯多元线性回归 物理 岩土工程
作者
Mohammad Najafzadeh,Mohammad Mahmoudi-Rad
出处
期刊:Results in engineering [Elsevier]
卷期号:23: 102792-102792 被引量:5
标识
DOI:10.1016/j.rineng.2024.102792
摘要

Vortex structures are widely employed for energy dissipation in urban surface water conveyance systems. When transporting wastewater through these networks, a substantial amount of water energy is dissipated. The effectiveness of these structures is usually evaluated by their efficiency in dissipating energy. Recent literature reviews on vortex structures have emphasized that, despite numerous experimental studies aimed at assessing their hydraulic performance, a reliable mathematical model to predict the residual energy head ratio remains elusive. In this study, resilient numerical models employing Artificial Intelligence (AI) methodologies (such as non-parametric regression, decision trees, and ensemble learning) have been structured by reliable experimental tests. By analyzing the experiments, three primary factors, referred to as flow Froude number (Fr), the ratio of sump height (Hs) to shaft diameter (D), and the ratio of drop total height (L) to shaft diameter (D) were determined to estimate the residual energy head ratio. Through experimental study, the residual energy head ratio is computed as a ratio of downstream flow energy (E2) to upstream flow energy (E1) at vortex structure. During the training and testing phases of AI models, the results of statistical tests, serving as quantitative evaluations, have shown that ensemble learning models namely Adaptive Boosting (AdaBoost) and Categorical Boosting (CatBoost) models had higher level of efficiency in the E2/E1 predictions and followed by Model Tree (MT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Multivariate Adaptive Regression Spline (MARS). Additionally, the second-order regression-based equation was obtained from Fully Factorial Method (FFM) which had lower level of precision (R = 0.8275, RMSE = 0.1156, and MAE = 0.0846) in the residual energy head ratio predictions when compared with all predictive AI models. Variations of three effective factors (i.e., Fr, L/D, Hs/D) versus the predicted E2/E1 ratios were in well agreement with observational tests. Moreover, the results of Sobol's index indicated that Fr number was determined as the most effective parameter in the evaluation of residual energy head ratio in the vortex structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助孙尼美采纳,获得10
刚刚
33完成签到,获得积分10
刚刚
1秒前
1秒前
1秒前
2秒前
xy发布了新的文献求助10
2秒前
曾哥帅发布了新的文献求助10
3秒前
3秒前
4秒前
4秒前
量子星尘发布了新的文献求助10
4秒前
核桃发布了新的文献求助10
4秒前
lidinf发布了新的文献求助10
4秒前
yangbo666发布了新的文献求助10
5秒前
蜜桃乌龙完成签到,获得积分20
5秒前
zhuyanqi完成签到,获得积分10
6秒前
6秒前
xy完成签到,获得积分10
7秒前
QQQ11发布了新的文献求助10
7秒前
ANCY发布了新的文献求助30
7秒前
cc发布了新的文献求助10
8秒前
111发布了新的文献求助10
8秒前
8秒前
科研通AI6应助可爱的芷云采纳,获得10
8秒前
wencan发布了新的文献求助10
9秒前
10秒前
糖焗小馒头完成签到,获得积分10
10秒前
优美凡白发布了新的文献求助10
10秒前
无花果应助li采纳,获得10
11秒前
雪白依云完成签到,获得积分10
11秒前
13秒前
13秒前
14秒前
clearlove发布了新的文献求助10
15秒前
辛勤寻凝发布了新的文献求助10
16秒前
爆米花应助111采纳,获得10
16秒前
淡然胡萝卜完成签到,获得积分10
17秒前
Xbox完成签到,获得积分10
17秒前
喵小喵完成签到,获得积分10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Research Handbook on Social Interaction 1000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5656628
求助须知:如何正确求助?哪些是违规求助? 4804442
关于积分的说明 15076544
捐赠科研通 4814884
什么是DOI,文献DOI怎么找? 2576051
邀请新用户注册赠送积分活动 1531356
关于科研通互助平台的介绍 1489936