Residual energy evaluation in vortex structures: On the application of machine learning models

残余物 支持向量机 人工智能 梯度升压 多元自适应回归样条 涡流 计算机科学 Boosting(机器学习) 阿达布思 弗劳德数 机器学习 液压头 数学 回归分析 工程类 算法 随机森林 机械 流量(数学) 几何学 贝叶斯多元线性回归 物理 岩土工程
作者
Mohammad Najafzadeh,Mohammad Mahmoudi-Rad
出处
期刊:Results in engineering [Elsevier]
卷期号:23: 102792-102792 被引量:5
标识
DOI:10.1016/j.rineng.2024.102792
摘要

Vortex structures are widely employed for energy dissipation in urban surface water conveyance systems. When transporting wastewater through these networks, a substantial amount of water energy is dissipated. The effectiveness of these structures is usually evaluated by their efficiency in dissipating energy. Recent literature reviews on vortex structures have emphasized that, despite numerous experimental studies aimed at assessing their hydraulic performance, a reliable mathematical model to predict the residual energy head ratio remains elusive. In this study, resilient numerical models employing Artificial Intelligence (AI) methodologies (such as non-parametric regression, decision trees, and ensemble learning) have been structured by reliable experimental tests. By analyzing the experiments, three primary factors, referred to as flow Froude number (Fr), the ratio of sump height (Hs) to shaft diameter (D), and the ratio of drop total height (L) to shaft diameter (D) were determined to estimate the residual energy head ratio. Through experimental study, the residual energy head ratio is computed as a ratio of downstream flow energy (E2) to upstream flow energy (E1) at vortex structure. During the training and testing phases of AI models, the results of statistical tests, serving as quantitative evaluations, have shown that ensemble learning models namely Adaptive Boosting (AdaBoost) and Categorical Boosting (CatBoost) models had higher level of efficiency in the E2/E1 predictions and followed by Model Tree (MT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost) and Multivariate Adaptive Regression Spline (MARS). Additionally, the second-order regression-based equation was obtained from Fully Factorial Method (FFM) which had lower level of precision (R = 0.8275, RMSE = 0.1156, and MAE = 0.0846) in the residual energy head ratio predictions when compared with all predictive AI models. Variations of three effective factors (i.e., Fr, L/D, Hs/D) versus the predicted E2/E1 ratios were in well agreement with observational tests. Moreover, the results of Sobol's index indicated that Fr number was determined as the most effective parameter in the evaluation of residual energy head ratio in the vortex structure.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
宁小源的源完成签到 ,获得积分0
5秒前
5秒前
现实的曼安完成签到 ,获得积分10
12秒前
18秒前
19秒前
drjim发布了新的文献求助10
19秒前
byb发布了新的文献求助10
24秒前
加油完成签到 ,获得积分10
28秒前
liciky完成签到 ,获得积分10
28秒前
脑洞疼应助科研通管家采纳,获得20
34秒前
安详的自中完成签到,获得积分20
37秒前
小马甲应助rash采纳,获得10
42秒前
drizzling完成签到,获得积分10
42秒前
kanong完成签到,获得积分0
44秒前
SCI的芷蝶完成签到 ,获得积分10
49秒前
糊涂的青烟完成签到 ,获得积分10
54秒前
yz完成签到,获得积分10
1分钟前
胖胖完成签到 ,获得积分0
1分钟前
权小夏完成签到 ,获得积分10
1分钟前
淡定的思松完成签到 ,获得积分10
1分钟前
风不尽,树不静完成签到 ,获得积分10
1分钟前
吉吉国王完成签到 ,获得积分10
1分钟前
Eri_SCI完成签到 ,获得积分10
1分钟前
猫的毛完成签到 ,获得积分10
1分钟前
1分钟前
仲夏夜之梦完成签到,获得积分10
1分钟前
森淼完成签到 ,获得积分10
1分钟前
1分钟前
drjim发布了新的文献求助10
1分钟前
sydhwo完成签到 ,获得积分0
1分钟前
赵婷完成签到,获得积分10
1分钟前
1分钟前
豆豆哥完成签到 ,获得积分10
1分钟前
kingwill应助踏实志泽采纳,获得20
1分钟前
ff完成签到,获得积分10
1分钟前
t铁核桃1985完成签到 ,获得积分10
1分钟前
lielizabeth完成签到 ,获得积分0
2分钟前
乐正怡完成签到 ,获得积分0
2分钟前
晶晶完成签到,获得积分10
2分钟前
2分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526639
求助须知:如何正确求助?哪些是违规求助? 3107025
关于积分的说明 9282163
捐赠科研通 2804690
什么是DOI,文献DOI怎么找? 1539568
邀请新用户注册赠送积分活动 716599
科研通“疑难数据库(出版商)”最低求助积分说明 709581