生物
RNA剪接
无意义介导的衰变
基因
选择性拼接
遗传学
基因表达
蛋白质组
基因表达调控
表达数量性状基因座
计算生物学
核糖核酸
基因亚型
单核苷酸多态性
基因型
作者
Benjamin Fair,Carlos F. Buen Abad Najar,Junxing Zhao,Stephanie Lozano,Austin M. Reilly,Gabriela Mossian,Jonathan P. Staley,Jingxin Wang,Yang Li
标识
DOI:10.1038/s41588-024-01872-x
摘要
Alternative splicing (AS) in human genes is widely viewed as a mechanism for enhancing proteomic diversity. AS can also impact gene expression levels without increasing protein diversity by producing 'unproductive' transcripts that are targeted for rapid degradation by nonsense-mediated decay (NMD). However, the relative importance of this regulatory mechanism remains underexplored. To better understand the impact of AS–NMD relative to other regulatory mechanisms, we analyzed population-scale genomic data across eight molecular assays, covering various stages from transcription to cytoplasmic decay. We report threefold more unproductive splicing compared with prior estimates using steady-state RNA. This unproductive splicing compounds across multi-intronic genes, resulting in 15% of transcript molecules from protein-coding genes being unproductive. Leveraging genetic variation across cell lines, we find that GWAS trait-associated loci explained by AS are as often associated with NMD-induced expression level differences as with differences in protein isoform usage. Our findings suggest that much of the impact of AS is mediated by NMD-induced changes in gene expression rather than diversification of the proteome. Genomic analyses suggest that ~15% of transcript molecules are spliced into unproductive transcripts targeted by nonsense-mediated decay, which have a larger effect on gene expression than previously thought.
科研通智能强力驱动
Strongly Powered by AbleSci AI