Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 核磁共振 热力学
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (35) 被引量:5
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
JamesPei应助科研通管家采纳,获得10
1秒前
桐桐应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
无极微光应助科研通管家采纳,获得20
2秒前
852应助科研通管家采纳,获得10
2秒前
我是老大应助科研通管家采纳,获得10
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
欢hhh发布了新的文献求助10
2秒前
李爱国应助科研通管家采纳,获得10
2秒前
2秒前
大个应助科研通管家采纳,获得10
2秒前
时冬冬应助科研通管家采纳,获得30
2秒前
深情安青应助科研通管家采纳,获得10
2秒前
SciGPT应助科研通管家采纳,获得10
2秒前
Owen应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
研友_VZG7GZ应助科研通管家采纳,获得10
2秒前
宇文青寒发布了新的文献求助10
2秒前
无极微光应助科研通管家采纳,获得20
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
弋少秋发布了新的文献求助10
3秒前
大模型应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得10
3秒前
酷波er应助科研通管家采纳,获得10
3秒前
香蕉觅云应助科研通管家采纳,获得10
3秒前
Ranglin应助科研通管家采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
无花果应助科研通管家采纳,获得10
3秒前
研究生end应助科研通管家采纳,获得20
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
4秒前
卡布奇诺完成签到,获得积分10
5秒前
5秒前
Schenb完成签到,获得积分20
6秒前
xiankanyun完成签到,获得积分10
6秒前
7秒前
UntilYou完成签到,获得积分10
8秒前
量子星尘发布了新的文献求助10
9秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
LRZ Gitlab附件(3D Matching of TerraSAR-X Derived Ground Control Points to Mobile Mapping Data 附件) 2000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5132359
求助须知:如何正确求助?哪些是违规求助? 4333801
关于积分的说明 13502280
捐赠科研通 4170858
什么是DOI,文献DOI怎么找? 2286696
邀请新用户注册赠送积分活动 1287582
关于科研通互助平台的介绍 1228505