Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 热力学 核磁共振
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (35): e2410662121-e2410662121 被引量:24
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
不懂白完成签到 ,获得积分10
1秒前
2秒前
cjm发布了新的文献求助10
2秒前
Ava应助jack采纳,获得10
2秒前
Jiangpeng完成签到,获得积分10
2秒前
2秒前
lhy12345完成签到 ,获得积分10
3秒前
可爱的函函应助Evander采纳,获得10
3秒前
Hello应助科研通管家采纳,获得10
3秒前
打打应助科研通管家采纳,获得10
3秒前
3秒前
852应助科研通管家采纳,获得10
3秒前
共享精神应助科研通管家采纳,获得10
3秒前
愉快的花卷完成签到,获得积分10
3秒前
CodeCraft应助科研通管家采纳,获得10
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
汉堡包应助科研通管家采纳,获得10
4秒前
醉熏的天薇完成签到,获得积分10
4秒前
4秒前
Orange应助科研通管家采纳,获得10
4秒前
李健应助科研通管家采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
完美世界应助科研通管家采纳,获得30
4秒前
上官若男应助科研通管家采纳,获得10
4秒前
脑洞疼应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
FashionBoy应助科研通管家采纳,获得10
4秒前
赘婿应助科研通管家采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
5秒前
Ava应助科研通管家采纳,获得10
5秒前
5秒前
小二郎应助科研通管家采纳,获得10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
田様应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 871
Alloy Phase Diagrams 500
A Guide to Genetic Counseling, 3rd Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5420180
求助须知:如何正确求助?哪些是违规求助? 4535297
关于积分的说明 14149461
捐赠科研通 4452280
什么是DOI,文献DOI怎么找? 2442103
邀请新用户注册赠送积分活动 1433615
关于科研通互助平台的介绍 1410869