Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 热力学 核磁共振
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (35): e2410662121-e2410662121 被引量:24
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
脸小呆呆发布了新的文献求助10
1秒前
1秒前
小云杉发布了新的文献求助10
2秒前
2秒前
2秒前
CipherSage应助zzc采纳,获得10
2秒前
忒啦啦发布了新的文献求助10
3秒前
yanghaiyu发布了新的文献求助10
3秒前
rrrrrrry发布了新的文献求助20
3秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
鱼仔发布了新的文献求助10
5秒前
lulufighting发布了新的文献求助10
5秒前
5秒前
yeeeee完成签到,获得积分10
5秒前
6秒前
Akim应助美好斓采纳,获得10
8秒前
高贵的迎蕾完成签到 ,获得积分10
8秒前
充电宝应助健壮夏山采纳,获得10
9秒前
9秒前
9秒前
11秒前
小徐同志完成签到,获得积分10
11秒前
yfn应助鲜艳的月饼采纳,获得10
12秒前
Rabbit完成签到 ,获得积分10
12秒前
Yuanyuan发布了新的文献求助10
12秒前
奶奶的龙应助tkx是流氓兔采纳,获得30
13秒前
14秒前
BowieHuang应助哈哈哈哈呵采纳,获得30
15秒前
15秒前
量子星尘发布了新的文献求助10
17秒前
hui完成签到,获得积分20
18秒前
zzc发布了新的文献求助10
18秒前
18秒前
健壮夏山完成签到,获得积分10
18秒前
19秒前
斯文念波完成签到,获得积分20
19秒前
19秒前
罗伊黄完成签到 ,获得积分10
19秒前
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729141
求助须知:如何正确求助?哪些是违规求助? 5316369
关于积分的说明 15315857
捐赠科研通 4876150
什么是DOI,文献DOI怎么找? 2619263
邀请新用户注册赠送积分活动 1568820
关于科研通互助平台的介绍 1525317