Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 热力学 核磁共振
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (35): e2410662121-e2410662121 被引量:24
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
JuPP关注了科研通微信公众号
1秒前
1秒前
华仔应助Alone离殇采纳,获得10
1秒前
芬芬完成签到,获得积分10
2秒前
三七完成签到 ,获得积分10
2秒前
平淡依玉发布了新的文献求助10
2秒前
科目三应助yan123采纳,获得10
3秒前
桐桐应助星辰采纳,获得10
3秒前
量子星尘发布了新的文献求助10
3秒前
淀粉发布了新的文献求助10
3秒前
Jared应助调皮的滑板采纳,获得10
4秒前
泽锦臻发布了新的文献求助10
4秒前
5秒前
煜清清发布了新的文献求助20
5秒前
威威发布了新的文献求助10
5秒前
7秒前
Criminology34应助收手吧大哥采纳,获得10
7秒前
7秒前
jz完成签到,获得积分10
7秒前
蛋蛋蛋丹完成签到 ,获得积分10
9秒前
9秒前
可乐完成签到,获得积分10
9秒前
kano发布了新的文献求助30
9秒前
小末发布了新的文献求助10
9秒前
科研小白发布了新的文献求助10
10秒前
潺潺流水完成签到,获得积分10
11秒前
阿海的发布了新的文献求助10
11秒前
11秒前
12秒前
12秒前
liu11发布了新的文献求助10
12秒前
12秒前
叶访云发布了新的文献求助10
13秒前
欣慰元蝶应助leslie采纳,获得10
13秒前
13秒前
支原体感染力完成签到,获得积分10
14秒前
无花果应助嘉嘉嘉嘉嘉采纳,获得10
14秒前
14秒前
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Limits of Participatory Action Research: When Does Participatory “Action” Alliance Become Problematic, and How Can You Tell? 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5545786
求助须知:如何正确求助?哪些是违规求助? 4631840
关于积分的说明 14622683
捐赠科研通 4573553
什么是DOI,文献DOI怎么找? 2507605
邀请新用户注册赠送积分活动 1484320
关于科研通互助平台的介绍 1455594