Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 热力学 核磁共振
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (35): e2410662121-e2410662121 被引量:24
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是老大应助加菲丰丰采纳,获得10
1秒前
1秒前
1秒前
sqxl发布了新的文献求助10
1秒前
贝拉发布了新的文献求助10
2秒前
zkl发布了新的文献求助10
3秒前
3秒前
3秒前
FashionBoy应助小呆鹿采纳,获得10
3秒前
5秒前
林俊超发布了新的文献求助10
5秒前
秋暝寒衣完成签到,获得积分10
5秒前
海绵宝宝的做饭铲完成签到,获得积分10
5秒前
6秒前
6秒前
瓜瓜发布了新的文献求助10
6秒前
dhd发布了新的文献求助10
7秒前
8秒前
9秒前
研友_VZG7GZ应助Sci_chen采纳,获得10
9秒前
Ava应助瘦瘦的草丛采纳,获得10
10秒前
李爱国应助skx采纳,获得10
10秒前
万嘉俊发布了新的文献求助10
10秒前
11秒前
Dryad完成签到,获得积分10
11秒前
zkl完成签到,获得积分10
11秒前
13秒前
13秒前
Lucas应助魁梧的涫采纳,获得10
14秒前
科研通AI6应助zkl采纳,获得10
16秒前
在水一方应助meww采纳,获得10
18秒前
18秒前
幸福的杨小夕完成签到,获得积分10
19秒前
瓜瓜完成签到,获得积分10
20秒前
Pupil完成签到,获得积分10
20秒前
賴博士发布了新的文献求助10
20秒前
20秒前
无限莫言完成签到,获得积分10
21秒前
Sci_chen发布了新的文献求助10
24秒前
zzz完成签到,获得积分10
25秒前
高分求助中
Encyclopedia of Quaternary Science Third edition 2025 12000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Beyond the sentence : discourse and sentential form / edited by Jessica R. Wirth 600
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
Reliability Monitoring Program 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5339366
求助须知:如何正确求助?哪些是违规求助? 4476236
关于积分的说明 13930768
捐赠科研通 4371637
什么是DOI,文献DOI怎么找? 2402047
邀请新用户注册赠送积分活动 1394975
关于科研通互助平台的介绍 1366898