亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 热力学 核磁共振
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (35): e2410662121-e2410662121 被引量:24
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
10秒前
16秒前
20秒前
HaCat完成签到,获得积分10
26秒前
shutong完成签到,获得积分10
28秒前
28秒前
32秒前
过时的笙发布了新的文献求助10
36秒前
文静千凡完成签到,获得积分10
44秒前
46秒前
水牛完成签到,获得积分10
46秒前
过时的笙完成签到,获得积分10
48秒前
Owen应助jjjdj采纳,获得10
48秒前
科研通AI2S应助科研通管家采纳,获得10
59秒前
小伙子应助科研通管家采纳,获得30
59秒前
shhoing应助科研通管家采纳,获得10
59秒前
1分钟前
quanyibo发布了新的文献求助30
1分钟前
1分钟前
1分钟前
领导范儿应助百里幻竹采纳,获得10
1分钟前
1分钟前
Wei发布了新的文献求助10
1分钟前
tutman发布了新的文献求助10
1分钟前
1分钟前
2分钟前
quanyibo完成签到,获得积分10
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
2分钟前
2分钟前
甜美寻芹发布了新的文献求助10
2分钟前
2分钟前
orixero应助甜美寻芹采纳,获得10
2分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
3分钟前
wanx-完成签到,获得积分20
3分钟前
MGraceLi_sci完成签到,获得积分10
3分钟前
3分钟前
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538710
求助须知:如何正确求助?哪些是违规求助? 4625743
关于积分的说明 14596823
捐赠科研通 4566416
什么是DOI,文献DOI怎么找? 2503302
邀请新用户注册赠送积分活动 1481395
关于科研通互助平台的介绍 1452750