Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 核磁共振 热力学
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (35)
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
不配.应助jessie采纳,获得20
1秒前
A哇咔咔咔完成签到,获得积分10
2秒前
haizz完成签到 ,获得积分10
2秒前
小陈发布了新的文献求助10
3秒前
Aki_27发布了新的文献求助10
3秒前
冷艳广山完成签到,获得积分10
4秒前
4秒前
调研昵称发布了新的文献求助20
4秒前
5秒前
爱学习的小花生完成签到,获得积分10
6秒前
张先生完成签到 ,获得积分10
7秒前
传奇3应助ji采纳,获得200
7秒前
8秒前
十字路口完成签到,获得积分10
8秒前
9秒前
可爱的函函应助iufan采纳,获得10
9秒前
Owen应助liberty采纳,获得10
9秒前
陈海伦发布了新的文献求助10
9秒前
Evan666完成签到,获得积分10
9秒前
菜鸟队长发布了新的文献求助10
10秒前
漂亮灵阳完成签到,获得积分10
10秒前
SUnnnnn发布了新的文献求助10
10秒前
咸鱼卷完成签到 ,获得积分10
10秒前
甜美的安南关注了科研通微信公众号
11秒前
11秒前
完美世界应助于航采纳,获得10
11秒前
科研通AI2S应助lumos采纳,获得10
11秒前
11秒前
轻松友容完成签到 ,获得积分10
12秒前
yxy发布了新的文献求助10
13秒前
14秒前
空白完成签到,获得积分10
14秒前
敏感板栗完成签到,获得积分10
14秒前
SC武完成签到,获得积分10
14秒前
14秒前
鳗鱼雪莲完成签到,获得积分10
14秒前
Akim应助冯娇娇采纳,获得10
15秒前
15秒前
15秒前
小陈完成签到,获得积分10
15秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3134659
求助须知:如何正确求助?哪些是违规求助? 2785567
关于积分的说明 7773009
捐赠科研通 2441215
什么是DOI,文献DOI怎么找? 1297881
科研通“疑难数据库(出版商)”最低求助积分说明 625070
版权声明 600825