Predicting protein conformational motions using energetic frustration analysis and AlphaFold2

变构调节 能源景观 计算机科学 分子动力学 蛋白质动力学 人工智能 构象集合 蛋白质结构 物理 机器学习 生物系统 化学 计算化学 生物 热力学 核磁共振
作者
Xingyue Guan,Qian-Yuan Tang,Weitong Ren,Mingchen Chen,Wei Wang,Peter G. Wolynes,Wenfei Li
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [National Academy of Sciences]
卷期号:121 (35) 被引量:5
标识
DOI:10.1073/pnas.2410662121
摘要

Proteins perform their biological functions through motion. Although high throughput prediction of the three-dimensional static structures of proteins has proved feasible using deep-learning-based methods, predicting the conformational motions remains a challenge. Purely data-driven machine learning methods encounter difficulty for addressing such motions because available laboratory data on conformational motions are still limited. In this work, we develop a method for generating protein allosteric motions by integrating physical energy landscape information into deep-learning-based methods. We show that local energetic frustration, which represents a quantification of the local features of the energy landscape governing protein allosteric dynamics, can be utilized to empower AlphaFold2 (AF2) to predict protein conformational motions. Starting from ground state static structures, this integrative method generates alternative structures as well as pathways of protein conformational motions, using a progressive enhancement of the energetic frustration features in the input multiple sequence alignment sequences. For a model protein adenylate kinase, we show that the generated conformational motions are consistent with available experimental and molecular dynamics simulation data. Applying the method to another two proteins KaiB and ribose-binding protein, which involve large-amplitude conformational changes, can also successfully generate the alternative conformations. We also show how to extract overall features of the AF2 energy landscape topography, which has been considered by many to be black box. Incorporating physical knowledge into deep-learning-based structure prediction algorithms provides a useful strategy to address the challenges of dynamic structure prediction of allosteric proteins.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
vinity完成签到,获得积分10
1秒前
2秒前
dhjic完成签到 ,获得积分10
3秒前
在水一方应助汝桢采纳,获得10
3秒前
4秒前
4秒前
ldz完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
6秒前
7秒前
落后的惜梦完成签到,获得积分10
7秒前
8秒前
小蘑菇应助hyw采纳,获得10
8秒前
gggggggbao发布了新的文献求助10
8秒前
燕麦大王发布了新的文献求助10
8秒前
9秒前
无花果应助hehe采纳,获得30
9秒前
ldz发布了新的文献求助10
10秒前
阿花阿花发布了新的文献求助10
10秒前
汝桢完成签到,获得积分10
11秒前
马开峰发布了新的文献求助10
11秒前
11秒前
12秒前
胡雨轩发布了新的文献求助10
12秒前
月亮发布了新的文献求助10
12秒前
leyi完成签到,获得积分20
12秒前
12秒前
12秒前
852应助白河采纳,获得30
13秒前
怡然诗霜完成签到,获得积分10
13秒前
汝桢发布了新的文献求助10
14秒前
善学以致用应助小凡采纳,获得10
14秒前
桂馥兰馨完成签到,获得积分10
15秒前
Ava应助乐辰采纳,获得10
15秒前
64658应助haha采纳,获得10
16秒前
Sunia完成签到,获得积分10
17秒前
兔兔完成签到,获得积分10
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《微型计算机》杂志2006年增刊 1600
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
Binary Alloy Phase Diagrams, 2nd Edition 1000
Air Transportation A Global Management Perspective 9th Edition 700
DESIGN GUIDE FOR SHIPBOARD AIRBORNE NOISE CONTROL 600
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4968781
求助须知:如何正确求助?哪些是违规求助? 4225990
关于积分的说明 13161443
捐赠科研通 4013136
什么是DOI,文献DOI怎么找? 2195894
邀请新用户注册赠送积分活动 1209316
关于科研通互助平台的介绍 1123362