纳米结构
胶体
纳米颗粒
等离子体子
人工神经网络
透射电子显微镜
表征(材料科学)
谱线
扫描电子显微镜
作文(语言)
化学
材料科学
生物系统
纳米技术
物理
计算机科学
生物
物理化学
光电子学
机器学习
天文
语言学
哲学
复合材料
作者
K. Foua Bi,Lei Lv,Dan Su,Shan-Jiang Wang,Xiaoyang Zhang,Tong Zhang
出处
期刊:Langmuir
[American Chemical Society]
日期:2024-09-05
卷期号:40 (37): 19412-19422
被引量:2
标识
DOI:10.1021/acs.langmuir.4c01713
摘要
In current research on the synthesis of colloidal nanostructures, the size and morphology of nanoparticles still exhibit certain dispersion and variation from batch to batch. Characterization of size distribution and morphology distribution of nanoparticles often requires techniques such as scanning electron microscopy or transmission electron microscopy, which involve high vacuum environments, are time-consuming, and costly. Experienced researchers can roughly estimate the size and distribution of nanostructure from spectra for a given synthetic route, but the accuracy is often limited. This paper reports the potential of using neural networks to accurately predict the composition of colloidal nanostructures from spectra. We address several fundamental issues in neural network prediction of colloidal composition. We first demonstrate the prediction of the composition of
科研通智能强力驱动
Strongly Powered by AbleSci AI