D-YOLOv7-tiny: a lightweight network for defect detection of prefabricated steel pipe

计算机科学 图像处理 工程制图 工程类 人工智能 图像(数学)
作者
Qianhong Gu,Xiangdi Yue,Yang Huang,Anquan Jian,Xiuxiang Huang
出处
期刊:Journal of Electronic Imaging [SPIE - International Society for Optical Engineering]
卷期号:33 (04) 被引量:1
标识
DOI:10.1117/1.jei.33.4.043017
摘要

Prefabricated steel pipes play a crucial role in prefabricated buildings, and maintaining their surface integrity is crucial to ensuring the safety of these buildings. We propose a surface defect detection algorithm for prefabricated steel pipes, D-YOLOv7-tiny, based on YOLOv7-tiny, to address the challenges of high parameter count and large computational requirements associated with traditional algorithms, making it difficult to deploy at resource-constrained terminals. By incorporating the squeeze-and-excitation attention mechanism into the backbone network, D-YOLOv7-tiny effectively minimizes the impact of redundant information and improves the network's ability to extract features. In addition, distribution shifting convolution is implemented as a replacement for a portion of traditional convolution in the original effective layer aggregation network module network. This exchange reduces the computational workload of the model without affecting its expressive power. Subsequently, the lightweight and ubiquitous content-aware reassembly of features upsampling operator improved the feature merging of the network. Finally, an attention-based dynamic head was adopted to enhance the model's robustness while minimizing parameter counts. Compared with YOLOv7-tiny, the mAP of D-YOLOv7-tiny was enhanced by 1.9% through experiments conducted on self collected datasets. During this process, the number of parameters and computational complexity decreased by 7.6% and 39.4%, respectively. The results show that this method achieves lightweight and meets the requirements of practical engineering accuracy and real-time performance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助DDDD源采纳,获得10
1秒前
1秒前
蜻蜓完成签到,获得积分10
2秒前
领导范儿应助Telomere采纳,获得10
2秒前
3秒前
啦啦啦啦发布了新的文献求助10
3秒前
许七安发布了新的文献求助10
4秒前
XJ发布了新的文献求助10
5秒前
CodeCraft应助hanliulaixi采纳,获得30
5秒前
6秒前
YU完成签到,获得积分10
6秒前
7秒前
陈双坤发布了新的文献求助10
7秒前
稳重孤丝发布了新的文献求助10
7秒前
8秒前
8秒前
9秒前
SciGPT应助来了来了采纳,获得10
9秒前
9秒前
jokerwang发布了新的文献求助10
12秒前
华仔应助粗犷的碧灵采纳,获得10
12秒前
心若向阳发布了新的文献求助10
13秒前
bkagyin应助流苏采纳,获得10
13秒前
Tough发布了新的文献求助10
13秒前
Cassiel发布了新的文献求助30
15秒前
hydra351发布了新的文献求助10
16秒前
许七安完成签到,获得积分20
16秒前
公司VV完成签到,获得积分10
16秒前
17秒前
17秒前
18秒前
19秒前
小遇完成签到 ,获得积分10
20秒前
寸马豆人完成签到,获得积分10
20秒前
21秒前
斯文傲芙发布了新的文献求助10
22秒前
cliche发布了新的文献求助10
22秒前
24秒前
25秒前
Owen应助天真的眼神采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526144
求助须知:如何正确求助?哪些是违规求助? 3106527
关于积分的说明 9280744
捐赠科研通 2804127
什么是DOI,文献DOI怎么找? 1539278
邀请新用户注册赠送积分活动 716514
科研通“疑难数据库(出版商)”最低求助积分说明 709495