A transient radial cortical microtubule array primes cell division in Arabidopsis

细胞分裂 微管 拟南芥 细胞生物学 细胞质 生物 电池极性 生物物理学 细胞 突变体 遗传学 基因
作者
Isaty Melogno,Shogo Takatani,Paula Llanos,Coralie Goncalves,Chie Kodera,Marjolaine Martin,Claire Lionnet,Magalie Uyttewaal,Martine Pastuglia,Christophe Tréhin,David D. Bouchez,Jacques Dumais,Olivier Hamant
出处
期刊:Proceedings of the National Academy of Sciences of the United States of America [Proceedings of the National Academy of Sciences]
卷期号:121 (29)
标识
DOI:10.1073/pnas.2320470121
摘要

Although the formation of new walls during plant cell division tends to follow maximal tensile stress direction, analyses of individual cells over time reveal a much more variable behavior. The origin of such variability as well as the exact role of interphasic microtubule behavior before cell division have remained mysterious so far. To approach this question, we took advantage of the Arabidopsis stem, where the tensile stress pattern is both highly anisotropic and stable. Although cortical microtubules (CMTs) generally align with maximal tensile stress, we detected a specific time window, ca. 3 h before cell division, where cells form a radial pattern of CMTs. This microtubule array organization preceded preprophase band (PPB) formation, a transient CMT array predicting the position of the future division plane. It was observed under different growth conditions and was not related to cell geometry or polar auxin transport. Interestingly, this cortical radial pattern correlated with the well-documented increase of cytoplasmic microtubule accumulation before cell division. This radial organization was prolonged in cells of the trm678 mutant, where CMTs are unable to form a PPB. Whereas division plane orientation in trm678 is noisier, we found that cell division symmetry was in contrast less variable between daughter cells. We propose that this “radial step” reflects a trade-off in robustness for two essential cell division attributes: symmetry and orientation. This involves a “reset” stage in G2, where an increased cytoplasmic microtubule accumulation transiently disrupts CMT alignment with tissue stress.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
Kia发布了新的文献求助30
2秒前
GUKGO完成签到,获得积分10
3秒前
limerence完成签到,获得积分10
3秒前
汉堡包应助风轩轩采纳,获得10
3秒前
林深时见鹿完成签到,获得积分10
3秒前
3秒前
13发布了新的文献求助30
4秒前
4秒前
orixero应助清爽朋友采纳,获得10
4秒前
凡人完成签到,获得积分10
5秒前
爆米花应助坚强水杯采纳,获得100
5秒前
shenyanlei发布了新的文献求助10
5秒前
欢喜大地发布了新的文献求助10
5秒前
Spencer发布了新的文献求助30
5秒前
随便发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
DTS发布了新的文献求助10
8秒前
8秒前
1851611453完成签到 ,获得积分10
9秒前
刘丰铭发布了新的文献求助10
9秒前
SciGPT应助jhonnyhuang采纳,获得10
9秒前
9秒前
11秒前
sunshine完成签到,获得积分10
11秒前
风清扬发布了新的文献求助10
11秒前
科研通AI6应助结实的栾采纳,获得10
11秒前
AskNature完成签到,获得积分10
12秒前
量子星尘发布了新的文献求助10
12秒前
13完成签到,获得积分20
12秒前
13秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608256
求助须知:如何正确求助?哪些是违规求助? 4692810
关于积分的说明 14875754
捐赠科研通 4717042
什么是DOI,文献DOI怎么找? 2544147
邀请新用户注册赠送积分活动 1509105
关于科研通互助平台的介绍 1472802