熔盐
催化作用
兴奋剂
盐(化学)
碳纤维
无机化学
化学
材料科学
化学工程
有机化学
复合材料
复合数
光电子学
工程类
作者
Jin Hui Yang,Yupeng Wu,Jun Shi,Huimin Liu,Zhiqiang Liu,Qinwen You,Xinxin Li,Linchuan Cong,Debo Liu,Fangbing Liu,Yue Jiang,Nan Lin,Wenli Zhang,Lin Haibo
出处
期刊:Journal of The Electrochemical Society
[The Electrochemical Society]
日期:2024-07-01
卷期号:171 (7): 076507-076507
标识
DOI:10.1149/1945-7111/ad659d
摘要
In recent years, the development of sustainable and environmentally friendly catalysts for various electrochemical processes has become a major focus in the fields of energy storage and fine chemicals. Efficient and cost-effective oxygen reduction reaction (ORR) catalysts are crucial for the advancement of fuel cells and metal-air batteries. This study explores the use of rice husk-based porous carbon (RHPC) with a hierarchically porous structure as a support material for sustainable ORR catalysts. The performance of RHPC was compared with other commercial carbon materials, such as acetylene black (AB) and coconut shell carbon (YP-50), evaluating key properties including particle size, specific surface area, oxygen-containing functional groups, degree of graphitization, and hydrophilicity/hydrophobicity. Compared to AB, which has higher conductivity, and YP-50, which has a greater abundance of oxygen functional groups, RHPC demonstrated significant advantages as a catalyst support. The resulting Fe-NS/RHPC catalyst exhibited high activity (E 1/2 = 0.858 V vs RHE, J = 4.83 mA cm −2 ), outperforming the standard Pt/C (E 1/2 = 0.844 V vs RHE, J = 4.99 mA cm −2 ). When tested in a liquid Zn-air battery, the Fe-NS/RHPC catalyst achieved a peak power density of 116.2 mW cm −2 and a capacity of up to 792.5 mAh g −1 .
科研通智能强力驱动
Strongly Powered by AbleSci AI