亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A Bi-Population Competition Adaptive Interior Search Algorithm Based on Reinforcement Learning for Flexible Job Shop Scheduling Problem

计算机科学 强化学习 作业车间调度 调度(生产过程) 数学优化 竞赛(生物学) 人口 人工智能 算法 地铁列车时刻表 生态学 人口学 数学 社会学 生物 操作系统
作者
Jiang Tianhua,Lu Liu
出处
期刊:International Journal of Computational Intelligence and Applications [World Scientific]
标识
DOI:10.1142/s1469026824500251
摘要

In this paper, a bi-population competition adaptive interior search algorithm (BCAISA) based on a reinforcement learning strategy is proposed for the classical flexible job shop scheduling problem (FJSP) to optimize the makespan. First, the scheduling solution is represented using a machine-job-based two-segment integer encoding method, and various heuristic rules are then applied to generate the initial population. Secondly, a bi-population mechanism is introduced to partition the population into two distinct sub-populations. These sub-populations are specifically tailored for machine assignment and operation permutation, employing different search strategies respectively, aiming to facilitate an efficient implementation of parallel search. A competition mechanism is introduced to facilitate the information exchange between the two sub-populations. Thirdly, the ISA is adapted for the discrete scheduling problem by discretizing a series of search operators, which include composition optimization, mirror search, and random walk. A Q-learning-based approach is proposed to dynamically adjust a key parameter, aiming to strike a balance between the capacity for global exploration and local exploitation. Finally, extensive experiments are conducted based on 10 well-known benchmark instances of the FJSP. The design of the experiment (DOE) method is employed to determine the algorithm’s parameters. Based on the computational results, the effectiveness of four improvement strategies is first validated. The BCAISA is then compared with fifteen published algorithms. The comparative data demonstrate that our algorithm outperforms other algorithms in 50% of benchmark instances. Additionally, according to the relative percentage deviation (RPD) from the state-of-the-art results, the BCAISA also exhibits superior performance. This highlights the effectiveness of our algorithm for solving the classical FJSP. To enhance the practical application, the scope of the ISA will be broadened in future work to more complex problems in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
虾滑完成签到,获得积分10
5秒前
11秒前
sutharsons应助ceeray23采纳,获得111
20秒前
zhxi给zhxi的求助进行了留言
44秒前
55秒前
阿泽完成签到,获得积分10
57秒前
哈哈嘻嘻完成签到,获得积分10
1分钟前
ChenW.完成签到,获得积分10
1分钟前
1分钟前
哈哈哈发布了新的文献求助10
1分钟前
mumu完成签到 ,获得积分10
1分钟前
小二郎应助dzll采纳,获得10
1分钟前
稳重的寒梦完成签到,获得积分20
1分钟前
Jasper应助快乐的慕青采纳,获得10
1分钟前
1分钟前
慕青应助哈哈哈采纳,获得10
1分钟前
dzll发布了新的文献求助10
1分钟前
1分钟前
江上烟发布了新的文献求助10
1分钟前
彦子完成签到 ,获得积分10
1分钟前
1分钟前
情怀应助江上烟采纳,获得30
1分钟前
ring发布了新的文献求助10
1分钟前
ring完成签到,获得积分20
2分钟前
2分钟前
2分钟前
栗子应助勤劳怜寒采纳,获得10
2分钟前
柔弱紊发布了新的文献求助10
2分钟前
小蘑菇应助rain采纳,获得10
2分钟前
2分钟前
阳光的访烟完成签到,获得积分20
2分钟前
2分钟前
dax大雄完成签到 ,获得积分10
2分钟前
2分钟前
勤劳怜寒完成签到,获得积分10
2分钟前
cheng完成签到,获得积分10
2分钟前
zhxi完成签到,获得积分20
3分钟前
zhxi发布了新的文献求助10
3分钟前
NS完成签到,获得积分10
3分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516334
求助须知:如何正确求助?哪些是违规求助? 3098575
关于积分的说明 9240082
捐赠科研通 2793695
什么是DOI,文献DOI怎么找? 1533176
邀请新用户注册赠送积分活动 712599
科研通“疑难数据库(出版商)”最低求助积分说明 707384