A Bi-Population Competition Adaptive Interior Search Algorithm Based on Reinforcement Learning for Flexible Job Shop Scheduling Problem

计算机科学 强化学习 作业车间调度 调度(生产过程) 数学优化 竞赛(生物学) 人口 人工智能 算法 地铁列车时刻表 生态学 人口学 数学 社会学 生物 操作系统
作者
Jiang Tianhua,Lu Liu
出处
期刊:International Journal of Computational Intelligence and Applications [Imperial College Press]
标识
DOI:10.1142/s1469026824500251
摘要

In this paper, a bi-population competition adaptive interior search algorithm (BCAISA) based on a reinforcement learning strategy is proposed for the classical flexible job shop scheduling problem (FJSP) to optimize the makespan. First, the scheduling solution is represented using a machine-job-based two-segment integer encoding method, and various heuristic rules are then applied to generate the initial population. Secondly, a bi-population mechanism is introduced to partition the population into two distinct sub-populations. These sub-populations are specifically tailored for machine assignment and operation permutation, employing different search strategies respectively, aiming to facilitate an efficient implementation of parallel search. A competition mechanism is introduced to facilitate the information exchange between the two sub-populations. Thirdly, the ISA is adapted for the discrete scheduling problem by discretizing a series of search operators, which include composition optimization, mirror search, and random walk. A Q-learning-based approach is proposed to dynamically adjust a key parameter, aiming to strike a balance between the capacity for global exploration and local exploitation. Finally, extensive experiments are conducted based on 10 well-known benchmark instances of the FJSP. The design of the experiment (DOE) method is employed to determine the algorithm’s parameters. Based on the computational results, the effectiveness of four improvement strategies is first validated. The BCAISA is then compared with fifteen published algorithms. The comparative data demonstrate that our algorithm outperforms other algorithms in 50% of benchmark instances. Additionally, according to the relative percentage deviation (RPD) from the state-of-the-art results, the BCAISA also exhibits superior performance. This highlights the effectiveness of our algorithm for solving the classical FJSP. To enhance the practical application, the scope of the ISA will be broadened in future work to more complex problems in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yookia应助李霞采纳,获得10
1秒前
Zhuhaimao完成签到,获得积分20
1秒前
爆米花应助王AA采纳,获得10
2秒前
新新完成签到 ,获得积分10
2秒前
我爱乒乓球完成签到,获得积分10
2秒前
彭于晏应助ATOM采纳,获得10
2秒前
小新发布了新的文献求助10
2秒前
2秒前
开放怀亦完成签到,获得积分10
3秒前
zzzzz完成签到,获得积分10
3秒前
3秒前
搜集达人应助小琪猪采纳,获得10
3秒前
颖火虫2588完成签到,获得积分10
4秒前
紧张的以山完成签到,获得积分10
4秒前
顺利紫山发布了新的文献求助10
5秒前
xiaose完成签到,获得积分10
5秒前
5秒前
鲸鲸发布了新的文献求助10
5秒前
5秒前
鲁丁丁发布了新的文献求助10
5秒前
烟花应助accpeted采纳,获得10
6秒前
帅气面包完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
6秒前
傻子与白痴完成签到,获得积分10
6秒前
不厌完成签到,获得积分10
7秒前
Muran完成签到,获得积分0
8秒前
桐桐应助蜡笔小新采纳,获得10
8秒前
头头完成签到,获得积分10
8秒前
8秒前
wangq完成签到,获得积分10
9秒前
rlix完成签到,获得积分20
9秒前
biomichael完成签到,获得积分10
9秒前
9秒前
9秒前
FAN完成签到,获得积分10
10秒前
ning完成签到,获得积分10
10秒前
共享精神应助Paddi采纳,获得10
10秒前
瞌睡社畜发布了新的文献求助10
11秒前
跳跳虎完成签到 ,获得积分10
11秒前
nini完成签到,获得积分10
11秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987021
求助须知:如何正确求助?哪些是违规求助? 3529365
关于积分的说明 11244629
捐赠科研通 3267729
什么是DOI,文献DOI怎么找? 1803932
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808635