A Bi-Population Competition Adaptive Interior Search Algorithm Based on Reinforcement Learning for Flexible Job Shop Scheduling Problem

计算机科学 强化学习 作业车间调度 调度(生产过程) 数学优化 竞赛(生物学) 人口 人工智能 算法 地铁列车时刻表 生态学 人口学 数学 社会学 生物 操作系统
作者
Jiang Tianhua,Lu Liu
出处
期刊:International Journal of Computational Intelligence and Applications [World Scientific]
标识
DOI:10.1142/s1469026824500251
摘要

In this paper, a bi-population competition adaptive interior search algorithm (BCAISA) based on a reinforcement learning strategy is proposed for the classical flexible job shop scheduling problem (FJSP) to optimize the makespan. First, the scheduling solution is represented using a machine-job-based two-segment integer encoding method, and various heuristic rules are then applied to generate the initial population. Secondly, a bi-population mechanism is introduced to partition the population into two distinct sub-populations. These sub-populations are specifically tailored for machine assignment and operation permutation, employing different search strategies respectively, aiming to facilitate an efficient implementation of parallel search. A competition mechanism is introduced to facilitate the information exchange between the two sub-populations. Thirdly, the ISA is adapted for the discrete scheduling problem by discretizing a series of search operators, which include composition optimization, mirror search, and random walk. A Q-learning-based approach is proposed to dynamically adjust a key parameter, aiming to strike a balance between the capacity for global exploration and local exploitation. Finally, extensive experiments are conducted based on 10 well-known benchmark instances of the FJSP. The design of the experiment (DOE) method is employed to determine the algorithm’s parameters. Based on the computational results, the effectiveness of four improvement strategies is first validated. The BCAISA is then compared with fifteen published algorithms. The comparative data demonstrate that our algorithm outperforms other algorithms in 50% of benchmark instances. Additionally, according to the relative percentage deviation (RPD) from the state-of-the-art results, the BCAISA also exhibits superior performance. This highlights the effectiveness of our algorithm for solving the classical FJSP. To enhance the practical application, the scope of the ISA will be broadened in future work to more complex problems in real-world scenarios.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
浩川完成签到,获得积分10
1秒前
1秒前
西瓜瓜完成签到,获得积分10
2秒前
ywhywh50完成签到,获得积分10
3秒前
Tiger发布了新的文献求助10
5秒前
胡萝卜发布了新的文献求助10
7秒前
10秒前
Waaly完成签到,获得积分10
10秒前
11秒前
yyyyyy完成签到,获得积分20
12秒前
轻松的小白菜完成签到,获得积分10
12秒前
wlw完成签到,获得积分10
13秒前
小小科学家完成签到 ,获得积分10
13秒前
16秒前
20秒前
20秒前
开心的寄灵完成签到 ,获得积分10
21秒前
22秒前
23秒前
谦让不二完成签到,获得积分10
24秒前
smile发布了新的文献求助10
24秒前
暗能量发布了新的文献求助10
24秒前
M先生发布了新的文献求助10
25秒前
传奇3应助舒服的灰狼采纳,获得10
25秒前
星辰大海应助迷路的煎蛋采纳,获得10
26秒前
等待的大炮完成签到,获得积分10
28秒前
自转无风完成签到,获得积分10
28秒前
rain完成签到,获得积分10
29秒前
噔噔噔噔完成签到,获得积分10
30秒前
exosome完成签到,获得积分10
32秒前
刘一完成签到 ,获得积分10
32秒前
34秒前
王一完成签到 ,获得积分10
34秒前
小龙发布了新的文献求助10
35秒前
嘻嘻哈哈应助小豹子采纳,获得10
35秒前
36秒前
饱满青完成签到 ,获得积分10
37秒前
tyughi完成签到,获得积分10
37秒前
炖地瓜完成签到 ,获得积分10
38秒前
高分求助中
HIGH DYNAMIC RANGE CMOS IMAGE SENSORS FOR LOW LIGHT APPLICATIONS 1500
Constitutional and Administrative Law 1000
Questioning sequences in the classroom 700
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
The Experimental Biology of Bryophytes 500
Rural Geographies People, Place and the Countryside 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5379091
求助须知:如何正确求助?哪些是违规求助? 4503505
关于积分的说明 14015967
捐赠科研通 4412216
什么是DOI,文献DOI怎么找? 2423735
邀请新用户注册赠送积分活动 1416630
关于科研通互助平台的介绍 1394129