Process simulation and evaluation of scaled-up biocatalytic systems: Advances, challenges, and future prospects

生化工程 过程(计算) 计算机科学 风险分析(工程) 管理科学 环境科学 工程类 业务 操作系统
作者
Zhonghao Chen,Lei Wang
出处
期刊:Biotechnology Advances [Elsevier]
卷期号:77: 108470-108470
标识
DOI:10.1016/j.biotechadv.2024.108470
摘要

With the increased demand for bio-based products and the rapid development of biomanufacturing technologies, biocatalytic reactions including microorganisms and enzyme based, have become promising approaches. Prior to the scale-up of production process, environmental and economic feasibility analysis are essential for the development of a sustainable and intelligent bioeconomy in the context of industry 4.0. To achieve these goals, process simulation supports system optimization, improve energy and resource utilization efficiencies, and support digital bioprocessing. However, due to the insufficient understanding of cellular metabolism and interaction mechanisms, there is still a lack of rational and transparent simulation tools to efficiently simulate, control, and optimize microbial/enzymatic reaction processes. Therefore, there is an urgent need to develop frameworks that integrate kinetic modeling, process simulation, and sustainability analysis for bioreaction simulations and their optimization. This review summarizes and compares the advantages and disadvantages of different process simulation software and model in simulating biocatalytic processes, identifies the limitations of traditional reaction kinetics models, and proposes the requirement of simulations close to real reaction. In addition, we explore the current state of kinetic modeling at the microscopic scale and how process simulation can be linked to kinetic models of cellular metabolism and computational fluid dynamics modeling. Finally, the paper discusses the requirement of sensitivity analysis and how machine learning can assist with optimization of simulations to improve energy efficiency and product yields for sustainable development from techno-economic and life cycle assessment perspectives.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
pwj发布了新的文献求助10
1秒前
5秒前
hky完成签到,获得积分10
5秒前
想去玩应助鲤鱼储采纳,获得10
5秒前
Lyra完成签到,获得积分10
6秒前
orchidaceae发布了新的文献求助10
8秒前
顾矜应助ShenghuiH采纳,获得10
8秒前
傅诗琦发布了新的文献求助30
9秒前
Akim应助huazi采纳,获得10
9秒前
俭朴的世界完成签到 ,获得积分10
11秒前
sutu应助然大宝采纳,获得10
12秒前
皑似山上雪完成签到,获得积分10
13秒前
单纯乞完成签到,获得积分10
13秒前
靳言发布了新的文献求助10
14秒前
15秒前
15秒前
16秒前
19秒前
19秒前
竹前家庆完成签到,获得积分10
19秒前
ZW发布了新的文献求助10
19秒前
ShenghuiH发布了新的文献求助10
21秒前
21秒前
SciGPT应助务实的凝天采纳,获得10
21秒前
huazi发布了新的文献求助10
21秒前
平淡惋清完成签到,获得积分10
23秒前
24秒前
Acetonitrile发布了新的文献求助10
25秒前
达蒙璃完成签到 ,获得积分0
25秒前
满意依白发布了新的文献求助10
25秒前
丰知然应助kk采纳,获得10
26秒前
善学以致用应助鲸鱼打滚采纳,获得10
26秒前
orchidaceae完成签到,获得积分10
27秒前
orixero应助傅诗琦采纳,获得10
27秒前
壮观从云完成签到,获得积分10
27秒前
28秒前
CodeCraft应助Harlotte采纳,获得10
28秒前
无花果应助靳言采纳,获得10
28秒前
学术裁缝完成签到,获得积分10
29秒前
务实的凝天完成签到,获得积分10
30秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3291911
求助须知:如何正确求助?哪些是违规求助? 2928394
关于积分的说明 8436718
捐赠科研通 2600331
什么是DOI,文献DOI怎么找? 1419018
科研通“疑难数据库(出版商)”最低求助积分说明 660203
邀请新用户注册赠送积分活动 642849