Surface Roughness Prediction in Additive Manufacturing: Presenting the Power of Neural Networks Compared to Linear Regression

表面粗糙度 人工神经网络 线性回归 曲面(拓扑) 功率(物理) 回归 预测能力 表面光洁度 回归分析 计算机科学 数学 统计 材料科学 人工智能 复合材料 几何学 物理 量子力学
作者
Ali Abdulshahed,Fatma Wafa
出处
期刊:Journal of Advanced Manufacturing Systems [World Scientific]
卷期号:: 1-20
标识
DOI:10.1142/s0219686725500040
摘要

This paper investigates surface roughness prediction in additive manufacturing through a comprehensive comparative analysis of linear regression (LR) and neural network (NN) models. Employing [Formula: see text]-means clustering, we identify four distinct clusters within the experimental data, each closely associated with specific 3D printing parameters. Within each cluster, we explore the optimal combination of factors that contribute to surface roughness and power efficiency. The main objective focuses on predicting a target variable, with an emphasis on evaluating model performance via key metrics such as [Formula: see text]-squared ([Formula: see text] 2 ), adjusted [Formula: see text]-squared, predicted [Formula: see text]-squared, mean squared error (MSE), and correlation coefficient ([Formula: see text]). Our study’s results illuminate the robust predictive capabilities of both LR and NN models. However, it becomes evident that the Neural Network model outperforms Linear Regression. It exhibits excellent performance metrics, characterized by higher [Formula: see text] 2 and correlation values, reduced MSE, and greater resilience to outliers. This pronounced disparity underscores the Neural Network model’s exceptional suitability for tasks requiring precise predictions and the identification of nonlinear patterns, particularly in the field of surface roughness prediction in additive manufacturing. These findings emphasize the key role of advanced machine learning techniques, illustrated by neural networks, in achieving precision within similar domains.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qiao完成签到,获得积分10
刚刚
NING完成签到 ,获得积分10
1秒前
Nami给Nami的求助进行了留言
1秒前
冬月完成签到,获得积分10
1秒前
cdd完成签到,获得积分10
2秒前
疯狂大脑壳完成签到,获得积分10
2秒前
小九九完成签到,获得积分10
4秒前
Sindy完成签到,获得积分10
4秒前
杭紫雪完成签到,获得积分10
5秒前
CYJ完成签到,获得积分10
5秒前
优美的碧琴完成签到,获得积分10
7秒前
舒心的水卉完成签到,获得积分10
7秒前
Purplesky完成签到,获得积分10
7秒前
wzy完成签到,获得积分10
7秒前
8秒前
8秒前
8秒前
my完成签到,获得积分10
8秒前
liyuxuan完成签到,获得积分10
8秒前
hentai完成签到,获得积分10
8秒前
小许会更好完成签到,获得积分10
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
9秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
10秒前
爆米花应助科研通管家采纳,获得10
10秒前
桐桐应助科研通管家采纳,获得10
10秒前
dong应助科研通管家采纳,获得10
10秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
A new approach to the extrapolation of accelerated life test data 1000
Coking simulation aids on-stream time 450
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4015806
求助须知:如何正确求助?哪些是违规求助? 3555777
关于积分的说明 11318714
捐赠科研通 3288911
什么是DOI,文献DOI怎么找? 1812318
邀请新用户注册赠送积分活动 887882
科研通“疑难数据库(出版商)”最低求助积分说明 812027