Spectral-Spatial Score Fusion Attention Network for Hyperspectral Image Classification with Limited Samples

高光谱成像 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 融合 图像融合 图像分辨率 遥感 图像(数学) 地质学 语言学 哲学
作者
Shun Cheng,Zhaohui Xue,Ziyu Li,Aijun Xu,Hongjun Su
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-22
标识
DOI:10.1109/jstars.2024.3440254
摘要

CNN and transformer-based models have been widely used in hyperspectral image (HSI) classification due to their excellent local and global modeling capabilities. In addition, attention mechanism is widely embedded in these models due to the effective enhancement of features learning. However, it is difficult to learn adaptive weights that effectively enhance features and most of existing methods lack transitional processing of shallow features. To overcome the above issues, a lightweight Spectral-Spatial Score Fusion Attention Network (S3FAN) with dual architecture is proposed for HSI classification with limited samples. Different from the regular dual branch models, S3FAN first performs pixel-level interaction and spatial feature extraction, then the obtained two sets of features are weighted and fused. In addition, we designed a Spectral-Spatial Score Fusion Attention mechanism to enhance dynamic attention to spectralspatial features. We also propose a spectral transition block to enhance model adaptability. Performance evaluation experiments conducted on five HSI datasets demonstrate that S3FAN has higher accuracy and generalization capabilities compared to existing advanced CNN and Transformer-based methods, with improvements in terms of OA around 3.18%-34.3% for Indian Pines, 5.87%-28.58% for University of Pavia, 2.57%-15.37% for Salinas, 1.64%-8.95% for Yellow River Delta, 2.87%-11.33% for WHU-Hi-LongKou, under 10 samples per class
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
hzf关闭了hzf文献求助
刚刚
重要盼望完成签到,获得积分10
1秒前
2秒前
自信甜瓜应助科研通管家采纳,获得10
3秒前
lyl19880908应助科研通管家采纳,获得10
3秒前
yufanhui应助科研通管家采纳,获得10
3秒前
梁三柏应助科研通管家采纳,获得10
3秒前
嗯哼应助科研通管家采纳,获得10
3秒前
genomed应助科研通管家采纳,获得10
3秒前
梁三柏应助科研通管家采纳,获得10
3秒前
丘比特应助科研通管家采纳,获得10
3秒前
情怀应助科研通管家采纳,获得30
3秒前
梁三柏应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
zhouleiwang发布了新的文献求助10
4秒前
中中发布了新的文献求助10
4秒前
小尾巴发布了新的文献求助10
6秒前
6秒前
追寻哲瀚发布了新的文献求助50
7秒前
8秒前
清秀的仙人掌完成签到,获得积分10
9秒前
12秒前
14秒前
楼台杏花琴弦完成签到,获得积分10
18秒前
猫的房东完成签到,获得积分20
25秒前
彩色的凌旋完成签到,获得积分10
27秒前
30秒前
32秒前
盼盼完成签到,获得积分10
33秒前
悠游发布了新的文献求助10
37秒前
善学以致用应助猫的房东采纳,获得10
38秒前
科研通AI2S应助shitou采纳,获得10
38秒前
科研通AI2S应助hebhm采纳,获得10
40秒前
桥本完成签到 ,获得积分10
43秒前
冷酷凌寒发布了新的文献求助10
46秒前
日富一日完成签到,获得积分10
49秒前
52秒前
臧真完成签到 ,获得积分10
55秒前
高分求助中
Sustainability in Tides Chemistry 2000
Pharmacogenomics: Applications to Patient Care, Third Edition 1000
Studien zur Ideengeschichte der Gesetzgebung 1000
TM 5-855-1(Fundamentals of protective design for conventional weapons) 1000
Genera Insectorum: Mantodea, Fam. Mantidæ, Subfam. Hymenopodinæ (Classic Reprint) 800
Ethnicities: Media, Health, and Coping 700
Development of a new synthetic process for the synthesis of (S)-methadone and (S)- and (R)-isomethadone as NMDA receptor antagonists for the treatment of depression 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3089129
求助须知:如何正确求助?哪些是违规求助? 2741271
关于积分的说明 7564185
捐赠科研通 2391538
什么是DOI,文献DOI怎么找? 1268286
科研通“疑难数据库(出版商)”最低求助积分说明 614044
版权声明 598684