已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Spectral-Spatial Score Fusion Attention Network for Hyperspectral Image Classification with Limited Samples

高光谱成像 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 融合 图像融合 图像分辨率 遥感 图像(数学) 地质学 哲学 语言学
作者
Shun Cheng,Zhaohui Xue,Ziyu Li,Aijun Xu,Hongjun Su
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-22
标识
DOI:10.1109/jstars.2024.3440254
摘要

CNN and transformer-based models have been widely used in hyperspectral image (HSI) classification due to their excellent local and global modeling capabilities. In addition, attention mechanism is widely embedded in these models due to the effective enhancement of features learning. However, it is difficult to learn adaptive weights that effectively enhance features and most of existing methods lack transitional processing of shallow features. To overcome the above issues, a lightweight Spectral-Spatial Score Fusion Attention Network (S3FAN) with dual architecture is proposed for HSI classification with limited samples. Different from the regular dual branch models, S3FAN first performs pixel-level interaction and spatial feature extraction, then the obtained two sets of features are weighted and fused. In addition, we designed a Spectral-Spatial Score Fusion Attention mechanism to enhance dynamic attention to spectralspatial features. We also propose a spectral transition block to enhance model adaptability. Performance evaluation experiments conducted on five HSI datasets demonstrate that S3FAN has higher accuracy and generalization capabilities compared to existing advanced CNN and Transformer-based methods, with improvements in terms of OA around 3.18%-34.3% for Indian Pines, 5.87%-28.58% for University of Pavia, 2.57%-15.37% for Salinas, 1.64%-8.95% for Yellow River Delta, 2.87%-11.33% for WHU-Hi-LongKou, under 10 samples per class

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
受伤凌蝶完成签到 ,获得积分10
刚刚
harry发布了新的文献求助50
1秒前
东都哈士奇完成签到,获得积分10
2秒前
XDSH完成签到 ,获得积分10
7秒前
默默善愁发布了新的文献求助100
7秒前
11秒前
12秒前
12秒前
BowieHuang应助称心的冰安采纳,获得30
13秒前
优雅的苹果完成签到 ,获得积分10
14秒前
流水z完成签到 ,获得积分10
14秒前
天天发布了新的文献求助10
15秒前
花开富贵完成签到 ,获得积分10
23秒前
Lisiqi完成签到,获得积分10
24秒前
25秒前
科研通AI6应助柚柚采纳,获得10
26秒前
123123完成签到 ,获得积分10
26秒前
26秒前
kk完成签到,获得积分10
30秒前
30秒前
吃葡萄不吐葡萄皮给吃葡萄不吐葡萄皮的求助进行了留言
32秒前
kikichiu发布了新的文献求助50
32秒前
科研通AI6应助孤独的幻桃采纳,获得10
34秒前
Colinlau发布了新的文献求助10
37秒前
38秒前
李健的小迷弟应助西瓜刀采纳,获得30
44秒前
ssz完成签到,获得积分10
47秒前
开朗的哈密瓜完成签到 ,获得积分10
48秒前
脑洞疼应助Colinlau采纳,获得30
49秒前
ding应助勤奋的琳采纳,获得10
50秒前
上岸的追风完成签到,获得积分20
51秒前
51秒前
55秒前
惊鸿H完成签到 ,获得积分10
56秒前
脑洞疼应助May采纳,获得10
58秒前
米龙完成签到,获得积分10
58秒前
58秒前
Evelyn_66完成签到,获得积分10
59秒前
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538374
求助须知:如何正确求助?哪些是违规求助? 4625516
关于积分的说明 14596112
捐赠科研通 4566095
什么是DOI,文献DOI怎么找? 2502975
邀请新用户注册赠送积分活动 1481266
关于科研通互助平台的介绍 1452503