Spectral-Spatial Score Fusion Attention Network for Hyperspectral Image Classification with Limited Samples

高光谱成像 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 融合 图像融合 图像分辨率 遥感 图像(数学) 地质学 哲学 语言学
作者
Shun Cheng,Zhaohui Xue,Ziyu Li,Aijun Xu,Hongjun Su
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-22
标识
DOI:10.1109/jstars.2024.3440254
摘要

CNN and transformer-based models have been widely used in hyperspectral image (HSI) classification due to their excellent local and global modeling capabilities. In addition, attention mechanism is widely embedded in these models due to the effective enhancement of features learning. However, it is difficult to learn adaptive weights that effectively enhance features and most of existing methods lack transitional processing of shallow features. To overcome the above issues, a lightweight Spectral-Spatial Score Fusion Attention Network (S3FAN) with dual architecture is proposed for HSI classification with limited samples. Different from the regular dual branch models, S3FAN first performs pixel-level interaction and spatial feature extraction, then the obtained two sets of features are weighted and fused. In addition, we designed a Spectral-Spatial Score Fusion Attention mechanism to enhance dynamic attention to spectralspatial features. We also propose a spectral transition block to enhance model adaptability. Performance evaluation experiments conducted on five HSI datasets demonstrate that S3FAN has higher accuracy and generalization capabilities compared to existing advanced CNN and Transformer-based methods, with improvements in terms of OA around 3.18%-34.3% for Indian Pines, 5.87%-28.58% for University of Pavia, 2.57%-15.37% for Salinas, 1.64%-8.95% for Yellow River Delta, 2.87%-11.33% for WHU-Hi-LongKou, under 10 samples per class
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
多多肉完成签到,获得积分10
刚刚
有点儿微胖完成签到,获得积分10
1秒前
豆4799完成签到,获得积分10
3秒前
ruby关注了科研通微信公众号
4秒前
JUGG发布了新的文献求助10
4秒前
牛马鹅完成签到,获得积分20
4秒前
gusgusgus完成签到,获得积分10
6秒前
Zy发布了新的文献求助10
7秒前
8秒前
8秒前
一平方米的大草原完成签到 ,获得积分10
9秒前
QINXIAOTONG完成签到,获得积分10
10秒前
Owen应助12123浪采纳,获得10
10秒前
lele完成签到,获得积分10
11秒前
我是老大应助大海捞针2025采纳,获得10
12秒前
华仔应助沉静弘文采纳,获得10
12秒前
12秒前
13秒前
李健应助tanfor采纳,获得10
13秒前
英俊的铭应助直率的雪巧采纳,获得10
14秒前
16秒前
啦啦啦完成签到 ,获得积分10
16秒前
lionel发布了新的文献求助10
17秒前
18秒前
渴望者发布了新的文献求助10
19秒前
19秒前
研友_Z30Kz8完成签到,获得积分10
19秒前
清秀的怀蕊完成签到 ,获得积分10
20秒前
叶十七完成签到,获得积分10
21秒前
21秒前
xiangoak完成签到 ,获得积分10
21秒前
大方万仇完成签到 ,获得积分10
21秒前
ruby发布了新的文献求助10
22秒前
23秒前
lin完成签到,获得积分10
24秒前
24秒前
26秒前
jias发布了新的文献求助10
26秒前
xxx关闭了xxx文献求助
27秒前
28秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Petrucci's General Chemistry: Principles and Modern Applications, 12th edition 600
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5300615
求助须知:如何正确求助?哪些是违规求助? 4448440
关于积分的说明 13845918
捐赠科研通 4334192
什么是DOI,文献DOI怎么找? 2379428
邀请新用户注册赠送积分活动 1374534
关于科研通互助平台的介绍 1340164