Spectral-Spatial Score Fusion Attention Network for Hyperspectral Image Classification with Limited Samples

高光谱成像 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 融合 图像融合 图像分辨率 遥感 图像(数学) 地质学 哲学 语言学
作者
Shun Cheng,Zhaohui Xue,Ziyu Li,Aijun Xu,Hongjun Su
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-22
标识
DOI:10.1109/jstars.2024.3440254
摘要

CNN and transformer-based models have been widely used in hyperspectral image (HSI) classification due to their excellent local and global modeling capabilities. In addition, attention mechanism is widely embedded in these models due to the effective enhancement of features learning. However, it is difficult to learn adaptive weights that effectively enhance features and most of existing methods lack transitional processing of shallow features. To overcome the above issues, a lightweight Spectral-Spatial Score Fusion Attention Network (S3FAN) with dual architecture is proposed for HSI classification with limited samples. Different from the regular dual branch models, S3FAN first performs pixel-level interaction and spatial feature extraction, then the obtained two sets of features are weighted and fused. In addition, we designed a Spectral-Spatial Score Fusion Attention mechanism to enhance dynamic attention to spectralspatial features. We also propose a spectral transition block to enhance model adaptability. Performance evaluation experiments conducted on five HSI datasets demonstrate that S3FAN has higher accuracy and generalization capabilities compared to existing advanced CNN and Transformer-based methods, with improvements in terms of OA around 3.18%-34.3% for Indian Pines, 5.87%-28.58% for University of Pavia, 2.57%-15.37% for Salinas, 1.64%-8.95% for Yellow River Delta, 2.87%-11.33% for WHU-Hi-LongKou, under 10 samples per class
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI2S应助科研通管家采纳,获得10
刚刚
小二郎应助加油女王采纳,获得10
刚刚
刚刚
1秒前
Zz完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
4秒前
4秒前
daisies应助lll采纳,获得20
5秒前
5秒前
老实绮琴发布了新的文献求助40
5秒前
6秒前
不想干活应助追寻的问玉采纳,获得30
6秒前
7秒前
素笺发布了新的文献求助10
7秒前
7秒前
ttt发布了新的文献求助10
8秒前
野性的小松鼠完成签到,获得积分10
8秒前
z19完成签到,获得积分10
8秒前
zjcbk985发布了新的文献求助10
8秒前
刘泽洋完成签到,获得积分10
9秒前
9秒前
9秒前
香蕉觅云应助niuma采纳,获得10
9秒前
yanglan完成签到 ,获得积分10
9秒前
章九里完成签到,获得积分20
10秒前
mika发布了新的文献求助10
10秒前
11秒前
11秒前
11秒前
猪猪hero发布了新的文献求助10
11秒前
Qingcyx发布了新的文献求助10
13秒前
13秒前
a.........发布了新的文献求助10
13秒前
搜集达人应助素笺采纳,获得10
13秒前
万能图书馆应助等待蚂蚁采纳,获得10
14秒前
大闲人发布了新的文献求助10
14秒前
14秒前
Owen应助zjcbk985采纳,获得10
15秒前
Azer发布了新的文献求助10
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
Stackable Smart Footwear Rack Using Infrared Sensor 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4608788
求助须知:如何正确求助?哪些是违规求助? 4015227
关于积分的说明 12432502
捐赠科研通 3696489
什么是DOI,文献DOI怎么找? 2038043
邀请新用户注册赠送积分活动 1071144
科研通“疑难数据库(出版商)”最低求助积分说明 955017