Spectral-Spatial Score Fusion Attention Network for Hyperspectral Image Classification with Limited Samples

高光谱成像 人工智能 计算机科学 上下文图像分类 模式识别(心理学) 融合 图像融合 图像分辨率 遥感 图像(数学) 地质学 语言学 哲学
作者
Shun Cheng,Zhaohui Xue,Ziyu Li,Aijun Xu,Hongjun Su
出处
期刊:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-22
标识
DOI:10.1109/jstars.2024.3440254
摘要

CNN and transformer-based models have been widely used in hyperspectral image (HSI) classification due to their excellent local and global modeling capabilities. In addition, attention mechanism is widely embedded in these models due to the effective enhancement of features learning. However, it is difficult to learn adaptive weights that effectively enhance features and most of existing methods lack transitional processing of shallow features. To overcome the above issues, a lightweight Spectral-Spatial Score Fusion Attention Network (S3FAN) with dual architecture is proposed for HSI classification with limited samples. Different from the regular dual branch models, S3FAN first performs pixel-level interaction and spatial feature extraction, then the obtained two sets of features are weighted and fused. In addition, we designed a Spectral-Spatial Score Fusion Attention mechanism to enhance dynamic attention to spectralspatial features. We also propose a spectral transition block to enhance model adaptability. Performance evaluation experiments conducted on five HSI datasets demonstrate that S3FAN has higher accuracy and generalization capabilities compared to existing advanced CNN and Transformer-based methods, with improvements in terms of OA around 3.18%-34.3% for Indian Pines, 5.87%-28.58% for University of Pavia, 2.57%-15.37% for Salinas, 1.64%-8.95% for Yellow River Delta, 2.87%-11.33% for WHU-Hi-LongKou, under 10 samples per class

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Youdge完成签到,获得积分10
刚刚
花里尘完成签到,获得积分10
刚刚
Tian完成签到,获得积分10
刚刚
zlll完成签到,获得积分10
1秒前
在水一方应助秦霄贤老婆采纳,获得10
1秒前
跳跃的野狼完成签到,获得积分10
1秒前
酷波er应助山君采纳,获得10
2秒前
江鑫楷发布了新的文献求助10
2秒前
2秒前
坚强的紫菜完成签到,获得积分10
3秒前
在水一方应助强健的糖豆采纳,获得10
4秒前
慕青应助努力搞钱采纳,获得10
4秒前
兔子不吃胡萝卜完成签到 ,获得积分10
4秒前
Mp4完成签到 ,获得积分10
4秒前
4秒前
小权拳的权完成签到,获得积分10
4秒前
xuan发布了新的文献求助10
5秒前
法号胡来完成签到,获得积分10
6秒前
7秒前
微风正好完成签到 ,获得积分10
7秒前
无奈曼云完成签到,获得积分10
7秒前
焦糖完成签到,获得积分10
7秒前
裙决完成签到,获得积分10
7秒前
asdfzxcv应助江鑫楷采纳,获得10
8秒前
DEUX完成签到,获得积分10
8秒前
8秒前
chen发布了新的文献求助10
8秒前
研友_nEjRNZ完成签到,获得积分10
9秒前
张思琪完成签到,获得积分10
9秒前
xht发布了新的文献求助10
9秒前
一蓑烟雨任平生完成签到,获得积分10
9秒前
一朵小鲜花儿完成签到,获得积分10
9秒前
9秒前
point1990完成签到,获得积分10
11秒前
lzy完成签到,获得积分10
11秒前
快乐的凡霜完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
hellen123完成签到,获得积分10
12秒前
14秒前
seeker347完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
化妆品原料学 1000
小学科学课程与教学 500
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5645248
求助须知:如何正确求助?哪些是违规求助? 4768236
关于积分的说明 15027213
捐赠科研通 4803788
什么是DOI,文献DOI怎么找? 2568456
邀请新用户注册赠送积分活动 1525787
关于科研通互助平台的介绍 1485451