A comparative study on mechanical-electrical-thermal characteristics and failure mechanism of LFP/NMC/LTO batteries under mechanical abuse

极限抗拉强度 脆性 材料科学 热的 失效模式及影响分析 刚度 入侵 失效机理 断裂(地质) 复合材料 物理 地球化学 气象学 地质学
作者
Renjie Wang,Guofeng Liu,Can Wang,Zhaoqi Ji,Quanqing Yu
出处
期刊:eTransportation [Elsevier BV]
卷期号:22: 100359-100359 被引量:27
标识
DOI:10.1016/j.etran.2024.100359
摘要

Understanding the failure behaviors and failure mechanisms of lithium-ion batteries under mechanical abuse is essential for numerical reconstruction of abuse scenarios for different types of cells. This study investigates the mechanical-electrical-thermal characteristics, components tensile properties and failure mechanisms of LiFePO4 (LFP), Li(Ni0.5Mn0.3Co0.2)O2 (NMC), and Li2TiO3 (LTO) cells through indentation experiments, including ball intrusion, cylindrical intrusion, and out-of-plane compression modes at quasi-static loading rates. Additional ball intrusion experiments were conducted at varying loading rates. This study compares the effects of different material systems on battery performance under standardized mechanical abuse conditions. Post-test examinations analyze surface damage and internal component fracture morphology. Two distinct fracture modes were observed: ductile fracture and brittle fracture. The findings suggest that, under the same loading mode, LTO cells exhibit distinct failure behavior compared to NMC and LFP cells, attributed to differing material properties and resulting fracture modes during intrusion. Based on the analysis of the tensile results of the battery components, the cell fracture mode may be related to the tensile strength of the separator. The loading rate significantly impacts the mechanical-electrical-thermal performance of pouch cells, resulting in increased cell stiffness and shorter internal short circuit duration at higher loading speeds. However, the effect of loading rate is consistent across cells with different material systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaowan完成签到,获得积分20
刚刚
小伍发布了新的文献求助10
1秒前
CC完成签到 ,获得积分10
2秒前
mouhao1发布了新的文献求助10
3秒前
Sega完成签到,获得积分10
3秒前
谢戴竹完成签到,获得积分20
3秒前
陈情完成签到,获得积分20
4秒前
量子星尘发布了新的文献求助150
5秒前
浮游应助ZHOUZHOU采纳,获得10
5秒前
6秒前
小二郎应助认真的不斜采纳,获得10
6秒前
熊11发布了新的文献求助10
6秒前
科研工头发布了新的文献求助10
8秒前
8秒前
8秒前
北陌完成签到,获得积分20
9秒前
浮游应助lyyy采纳,获得10
9秒前
9秒前
情怀应助Atticus采纳,获得10
9秒前
11秒前
泡沫完成签到,获得积分10
12秒前
TANG完成签到,获得积分10
12秒前
13秒前
Gakay发布了新的文献求助10
15秒前
gogogre发布了新的文献求助10
15秒前
dwj发布了新的文献求助10
15秒前
16秒前
菠萝李完成签到,获得积分10
18秒前
赘婿应助细腻听白采纳,获得10
18秒前
阿崔发布了新的文献求助10
19秒前
19秒前
英勇哈密瓜数据线完成签到,获得积分10
19秒前
清竹完成签到,获得积分10
20秒前
无花果应助hu采纳,获得10
21秒前
阿怪发布了新的文献求助10
22秒前
量子星尘发布了新的文献求助10
22秒前
浮游应助grumpysquirel采纳,获得10
23秒前
dwj完成签到,获得积分10
23秒前
万能图书馆应助Akiba采纳,获得10
24秒前
pearer完成签到,获得积分10
24秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143039
求助须知:如何正确求助?哪些是违规求助? 4341079
关于积分的说明 13519541
捐赠科研通 4181353
什么是DOI,文献DOI怎么找? 2292877
邀请新用户注册赠送积分活动 1293512
关于科研通互助平台的介绍 1236099