Discovery of potential antidiabetic peptides using deep learning

计算机科学 药物发现 人工智能 深度学习 机器学习 计算生物学 化学 生物 生物化学
作者
Jianda Yue,Jiawei Xu,Tingting Li,Yaqi Li,Zihui Chen,Songping Liang,Zhonghua Liu,Ying Wang
出处
期刊:Computers in Biology and Medicine [Elsevier]
卷期号:180: 109013-109013 被引量:1
标识
DOI:10.1016/j.compbiomed.2024.109013
摘要

Antidiabetic peptides (ADPs), peptides with potential antidiabetic activity, hold significant importance in the treatment and control of diabetes. Despite their therapeutic potential, the discovery and prediction of ADPs remain challenging due to limited data, the complex nature of peptide functions, and the expensive and time-consuming nature of traditional wet lab experiments. This study aims to address these challenges by exploring methods for the discovery and prediction of ADPs using advanced deep learning techniques. Specifically, we developed two models: a single-channel CNN and a three-channel neural network (CNN + RNN + Bi-LSTM). ADPs were primarily gathered from the BioDADPep database, alongside thousands of non-ADPs sourced from anticancer, antibacterial, and antiviral peptide datasets. Subsequently, data preprocessing was performed with the evolutionary scale model (ESM-2), followed by model training and evaluation through 10-fold cross-validation. Furthermore, this work collected a series of newly published ADPs as an independent test set through literature review, and found that the CNN model achieved the highest accuracy (90.48 %) in predicting the independent test set, surpassing existing ADP prediction tools. Finally, the application of the model was considered. SeqGAN was used to generate new candidate ADPs, followed by screening with the constructed CNN model. Selected peptides were then evaluated using physicochemical property prediction and structural forecasts for pharmaceutical potential. In summary, this study not only established robust ADP prediction models but also employed these models to screen a batch of potential ADPs, addressing a critical need in the field of peptide-based antidiabetic research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助zpq采纳,获得10
刚刚
1秒前
HY发布了新的文献求助10
1秒前
SciGPT应助ben采纳,获得10
2秒前
2秒前
高山流水发布了新的文献求助50
3秒前
阳光的夏槐关注了科研通微信公众号
3秒前
Jasper应助小辉辉同学采纳,获得10
3秒前
5秒前
Akim应助啥,这都是啥采纳,获得10
5秒前
大模型应助爸爸采纳,获得10
5秒前
炒栗子发布了新的文献求助10
6秒前
深情安青应助毛毛采纳,获得10
6秒前
梁liang发布了新的文献求助10
6秒前
6秒前
进_发布了新的文献求助10
7秒前
yufanhui应助CY采纳,获得10
7秒前
许七安完成签到,获得积分10
7秒前
赘婿应助Weekhs采纳,获得10
8秒前
8秒前
xuxingjie完成签到,获得积分10
8秒前
万能图书馆应助ll采纳,获得10
8秒前
打打应助许诺采纳,获得10
8秒前
10秒前
甜橘发布了新的文献求助10
10秒前
11秒前
11秒前
清辞完成签到,获得积分10
11秒前
11秒前
风中的怜阳完成签到,获得积分10
11秒前
Erin发布了新的文献求助10
12秒前
完美冷安完成签到,获得积分10
12秒前
12秒前
Agan完成签到,获得积分10
12秒前
13秒前
sophia完成签到 ,获得积分10
13秒前
123发布了新的文献求助10
14秒前
14秒前
请叫我风吹麦浪应助啁啾采纳,获得10
14秒前
爆米花应助炒栗子采纳,获得10
15秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308038
求助须知:如何正确求助?哪些是违规求助? 2941584
关于积分的说明 8504244
捐赠科研通 2616093
什么是DOI,文献DOI怎么找? 1429449
科研通“疑难数据库(出版商)”最低求助积分说明 663767
邀请新用户注册赠送积分活动 648712