亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Integrating vision‐based AI and large language models for real‐time water pollution surveillance

污染 水污染 污染物 环境科学 计算机科学 生态学 生物
作者
R. Dinesh Jackson Samuel,Yusuf Sermet,David M. Cwiertny,İbrahim Demir
出处
期刊:Water Environment Research [Wiley]
卷期号:96 (8) 被引量:1
标识
DOI:10.1002/wer.11092
摘要

Water pollution has become a major concern in recent years, affecting over 2 billion people worldwide, according to UNESCO. This pollution can occur by either naturally, such as algal blooms, or man-made when toxic substances are released into water bodies like lakes, rivers, springs, and oceans. To address this issue and monitor surface-level water pollution in local water bodies, an informative real-time vision-based surveillance system has been developed in conjunction with large language models (LLMs). This system has an integrated camera connected to a Raspberry Pi for processing input frames and is further linked to LLMs for generating contextual information regarding the type, causes, and impact of pollutants on both human health and the environment. This multi-model setup enables local authorities to monitor water pollution and take necessary steps to mitigate it. To train the vision model, seven major types of pollutants found in water bodies like algal bloom, synthetic foams, dead fishes, oil spills, wooden logs, industrial waste run-offs, and trashes were used for achieving accurate detection. ChatGPT API has been integrated with the model to generate contextual information about pollution detected. Thus, the multi-model system can conduct surveillance over water bodies and autonomously alert local authorities to take immediate action, eliminating the need for human intervention. PRACTITIONER POINTS: Combines cameras and LLMs with Raspberry Pi for processing and generating pollutant information. Uses YOLOv5 to detect algal blooms, synthetic foams, dead fish, oil spills, and industrial waste. Supports various modules and environments, including drones and mobile apps for broad monitoring. Educates on environmental healthand alerts authorities about water pollution.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
marshyyy发布了新的文献求助10
3秒前
听话的靖柏完成签到 ,获得积分10
12秒前
17秒前
Akim应助marshyyy采纳,获得10
30秒前
40秒前
爆米花应助科研通管家采纳,获得10
43秒前
研友_VZG7GZ应助俊逸战斗机采纳,获得10
58秒前
1分钟前
1分钟前
1分钟前
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
2分钟前
文风杰采发布了新的文献求助10
2分钟前
2分钟前
充电宝应助文风杰采采纳,获得10
2分钟前
制冷剂完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
盼盼完成签到,获得积分10
4分钟前
沿途有你完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
Yolanda完成签到 ,获得积分10
5分钟前
5分钟前
虞不斜完成签到 ,获得积分10
5分钟前
5分钟前
5分钟前
爆米花应助krajicek采纳,获得10
6分钟前
6分钟前
6分钟前
krajicek发布了新的文献求助10
6分钟前
科研通AI2S应助科研通管家采纳,获得10
6分钟前
养猪大户完成签到 ,获得积分10
6分钟前
7分钟前
zsmj23完成签到 ,获得积分0
7分钟前
8分钟前
zz发布了新的文献求助10
8分钟前
bkagyin应助zz采纳,获得10
8分钟前
8分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1200
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 1000
中国荞麦品种志 1000
BIOLOGY OF NON-CHORDATES 1000
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 550
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3360076
求助须知:如何正确求助?哪些是违规求助? 2982609
关于积分的说明 8704598
捐赠科研通 2664401
什么是DOI,文献DOI怎么找? 1459035
科研通“疑难数据库(出版商)”最低求助积分说明 675397
邀请新用户注册赠送积分活动 666421