Machine learning to guide the use of plasma technology for antibiotic degradation

降级(电信) 抗生素 计算机科学 工程类 化学 废物管理 电信 生物化学
作者
Li Xue,Runyu Jing,Nanya Zhong,Xiaoyu Nie,Yitong Du,Jiesi Luo,Kama Huang
出处
期刊:Journal of Hazardous Materials [Elsevier BV]
卷期号:480: 135787-135787 被引量:1
标识
DOI:10.1016/j.jhazmat.2024.135787
摘要

Antibiotics are misused and discharged into environmental water, posing a constant potential threat to the ecosystem. Utilising plasma's physical and chemical effects to remove antibiotics has emerged as a promising wastewater treatment technology. However, the complexity and high cost of reactor configurations represent significant limitations to the practical application of this technology. Furthermore, evaluating the degradation efficiency of antibiotics necessitates using costly and sophisticated testing instruments, coupled with time-consuming and labour-intensive experiments. The present study developed a generalised model using machine learning algorithms to predict the removal efficiency of antibiotics by a plasma system. Of the eight machine learning algorithms constructed, the ensemble model XGBoost exhibited the highest prediction accuracy, as indicated by a Pearson correlation coefficient of 0.943. This correlation indicates a strong relationship between the predicted removal rates and the experimental values. Moreover, the accuracy of the prediction was enhanced through the utilisation of a multi-model stacking approach. A further quantitative assessment of the key factors affecting the efficiency of the plasma process, and their synergistic effects, is provided by the interpretable analysis of the model's behaviour. It is anticipated that the results will facilitate the design of efficient plasma systems, reduce the need for extensive experimental screening, and improve practical applications in the removal of antibiotic contamination. This provides an informative view of the applications of plasma technology, opening the way for new environmental research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助科研通管家采纳,获得10
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
脑洞疼应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
爆米花应助科研通管家采纳,获得10
刚刚
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
研友_VZG7GZ应助科研通管家采纳,获得10
1秒前
momo应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
Yuying完成签到 ,获得积分10
2秒前
2秒前
he完成签到,获得积分10
2秒前
滕遥完成签到,获得积分10
3秒前
bkagyin应助zhan采纳,获得10
3秒前
HEANZ完成签到,获得积分10
3秒前
拼搏的飞薇完成签到,获得积分10
4秒前
明明发布了新的文献求助10
4秒前
AIMS完成签到,获得积分10
4秒前
娃哈哈发布了新的文献求助10
5秒前
赘婿应助moon689采纳,获得10
5秒前
领导范儿应助德鲁大叔采纳,获得10
5秒前
李爱国应助han采纳,获得10
6秒前
媛子赚大qian完成签到,获得积分10
6秒前
6秒前
8秒前
崔博发布了新的文献求助10
8秒前
麒葩!发布了新的文献求助10
8秒前
Akim应助自觉葶采纳,获得10
8秒前
8秒前
9秒前
9秒前
富贵儿完成签到,获得积分10
9秒前
智勇双全完成签到,获得积分10
10秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986953
求助须知:如何正确求助?哪些是违规求助? 3529326
关于积分的说明 11244328
捐赠科研通 3267695
什么是DOI,文献DOI怎么找? 1803880
邀请新用户注册赠送积分活动 881223
科研通“疑难数据库(出版商)”最低求助积分说明 808620