已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Machine learning to guide the use of plasma technology for antibiotic degradation

降级(电信) 抗生素 计算机科学 工程类 化学 废物管理 电信 生物化学
作者
Li Xue,Runyu Jing,Nanya Zhong,Xiaoyu Nie,Yitong Du,Jiesi Luo,Kama Huang
出处
期刊:Journal of Hazardous Materials [Elsevier]
卷期号:480: 135787-135787 被引量:3
标识
DOI:10.1016/j.jhazmat.2024.135787
摘要

Antibiotics are misused and discharged into environmental water, posing a constant potential threat to the ecosystem. Utilising plasma's physical and chemical effects to remove antibiotics has emerged as a promising wastewater treatment technology. However, the complexity and high cost of reactor configurations represent significant limitations to the practical application of this technology. Furthermore, evaluating the degradation efficiency of antibiotics necessitates using costly and sophisticated testing instruments, coupled with time-consuming and labour-intensive experiments. The present study developed a generalised model using machine learning algorithms to predict the removal efficiency of antibiotics by a plasma system. Of the eight machine learning algorithms constructed, the ensemble model XGBoost exhibited the highest prediction accuracy, as indicated by a Pearson correlation coefficient of 0.943. This correlation indicates a strong relationship between the predicted removal rates and the experimental values. Moreover, the accuracy of the prediction was enhanced through the utilisation of a multi-model stacking approach. A further quantitative assessment of the key factors affecting the efficiency of the plasma process, and their synergistic effects, is provided by the interpretable analysis of the model's behaviour. It is anticipated that the results will facilitate the design of efficient plasma systems, reduce the need for extensive experimental screening, and improve practical applications in the removal of antibiotic contamination. This provides an informative view of the applications of plasma technology, opening the way for new environmental research questions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mwm完成签到 ,获得积分10
1秒前
Ava应助上蓝南宫采纳,获得10
1秒前
呵呵哒完成签到,获得积分10
1秒前
阿朱关注了科研通微信公众号
1秒前
2秒前
czcmh给加菲丰丰的求助进行了留言
4秒前
山月系晚星完成签到,获得积分10
4秒前
呵呵哒发布了新的文献求助80
5秒前
注恤明完成签到,获得积分10
6秒前
糊涂的蛋挞完成签到 ,获得积分20
6秒前
sep完成签到 ,获得积分10
6秒前
7秒前
现代期待完成签到,获得积分10
7秒前
无花果应助小池同学采纳,获得10
8秒前
8秒前
呆萌海亦完成签到,获得积分10
9秒前
younger发布了新的文献求助10
14秒前
16秒前
16秒前
lmy完成签到 ,获得积分10
19秒前
Bluestar完成签到,获得积分10
19秒前
Attention完成签到,获得积分10
19秒前
POJING发布了新的文献求助30
20秒前
阿朱发布了新的文献求助10
22秒前
myg123完成签到 ,获得积分10
22秒前
23秒前
科研通AI2S应助糊涂的蛋挞采纳,获得10
26秒前
aillonm发布了新的文献求助10
27秒前
小蘑菇应助小麻采纳,获得30
28秒前
天天快乐应助shuiyu采纳,获得10
32秒前
落雪完成签到,获得积分10
34秒前
烨枫晨曦完成签到,获得积分10
35秒前
35秒前
38秒前
洞两发布了新的文献求助10
41秒前
浮游应助科研通管家采纳,获得10
42秒前
完美世界应助科研通管家采纳,获得10
42秒前
bkagyin应助科研通管家采纳,获得10
42秒前
Owen应助科研通管家采纳,获得10
42秒前
浮游应助科研通管家采纳,获得10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1561
Binary Alloy Phase Diagrams, 2nd Edition 1200
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5509080
求助须知:如何正确求助?哪些是违规求助? 4604125
关于积分的说明 14489198
捐赠科研通 4538775
什么是DOI,文献DOI怎么找? 2487190
邀请新用户注册赠送积分活动 1469617
关于科研通互助平台的介绍 1441838