Electrolyte Effects in Electrocatalytic Kinetics†

化学 动力学 电解质 化学动力学 无机化学 电极 物理化学 物理 量子力学
作者
Xiaoyu Li,Zhiming Zhang,Xinxin Zhuang,Zhen Jia,Tao Wang
出处
期刊:Chinese Journal of Chemistry [Wiley]
卷期号:42 (24): 3533-3552
标识
DOI:10.1002/cjoc.202400458
摘要

Comprehensive Summary Tuning electrolyte properties is a widely recognized strategy to enhance activity and selectivity in electrocatalysis, drawing increasing attention in this domain. Despite extensive experimental and theoretical studies, debates persist about how various electrolyte components influence electrocatalytic reactions. We offer a concise review focusing on current discussions, especially the contentious roles of cations. This article further examines how different factors affect the interfacial solvent structure, particularly the hydrogen‐bonding network, and delves into the microscopic kinetics of electron and proton‐coupled electron transfer. We also discuss the overarching influence of solvents from a kinetic modeling perspective, aiming to develop a robust correlation between electrolyte structure and reactivity. Lastly, we summarize ongoing research challenges and suggest potential directions for future studies on electrolyte effects in electrocatalysis. Key Scientists In 1956, Marcus theory was developed to describe the mechanism of outer‐sphere electron transfer (OS‐ET). In 1992, Nocera et al. directly measured proton‐coupled electron transfer (PCET) kinetics for the first time, and their subsequent research in 1995 investigated the effects of proton motion on electron transfer (ET) kinetics. In 1999 and 2000, Hammes‐schiffer et al. developed the multistate continuum theory for multiple charge reactions and deduced the rate expressions for nonadiabatic PCET reactions in solution, laying the theoretical foundation for the analysis of PCET kinetics in electrochemical processes. In 2006, Saveant et al. verified the concerted proton and electron transfer (CPET) mechanism in the oxidation of phenols coupled with intramolecular amine‐driven proton transfer (PT). Their subsequent work in 2008 reported the pH‐dependent pathways of electrochemical oxidation of phenols. Electrolyte effects in electrocatalysis have gained emphasis in recent years. In 2009, Markovic's pioneering work proposed non‐covalent interactions between hydrated alkaline cations and adsorbed OH species in oxygen reduction reaction (ORR)/hydrogen oxidation reaction (HOR). In 2011, Markovic et al. significantly enhanced hydrogen evolution reaction (HER) activity in alkaline solution by improving water dissociation, which was assumed to dominate the sluggish HER kinetics in such media. In comparation, Yan et al. applied hydrogen binding energy (HBE) theory in 2015 to explain the pH‐dependent HER/HOR activity. Cations play a significant role in regulating the selectivity and activity of carbon dioxide reduction (CO 2 RR). In 2016 and 2017, Karen Chan et al. introduced the electric field generated by solvated cations to explain the cation effects on electrochemical CO2RR. Conversely, in 2021, Koper et al. suggested that short‐range electrostatic interactions between partially desolvated metal cations and CO 2 stabilized CO 2 and promoted CO 2 RR. Recent researches have combined the exploration of the electrical double layer (EDL) structure with theoretical analysis of PCET kinetics. In 2019, Huang et al. developed a microscopic Hamiltonian model to quantitatively understand the sluggish hydrogen electrocatalysis in alkaline media. In 2021, two meticulous studies from Shao‐Horn's group analyzed the effects of cations on reorganization energy and the impacts of hydrogen bonds between proton donors and acceptors on proton tunneling kinetics, respectively. Electrolyte effects on proton transport process were researched in recent years. In 2022, Hu et al. and Chen et al. proposed that the cation‐induced electric field distribution and pH‐dependent hydrogen bonding network connectivity played essential roles in proton transport, separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吴未发布了新的文献求助10
刚刚
以七发布了新的文献求助10
2秒前
一百分完成签到,获得积分10
2秒前
走四方发布了新的文献求助10
3秒前
3秒前
乐观的从云完成签到,获得积分10
3秒前
3秒前
4秒前
慕青应助张许昂采纳,获得10
5秒前
bkagyin应助Sophie采纳,获得10
5秒前
5秒前
5秒前
五五我完成签到,获得积分10
5秒前
xb_Z完成签到,获得积分10
6秒前
活泼易蓉完成签到,获得积分10
6秒前
6秒前
8秒前
量子星尘发布了新的文献求助100
8秒前
huangym_o发布了新的文献求助10
8秒前
读个博吧完成签到,获得积分10
8秒前
dew应助loding123采纳,获得10
9秒前
9秒前
丘比特应助wang采纳,获得10
9秒前
柒辞完成签到,获得积分10
10秒前
GUYIMI完成签到,获得积分10
10秒前
孑宀辶发布了新的文献求助10
11秒前
完美世界应助以七采纳,获得10
12秒前
朴素访琴完成签到 ,获得积分10
12秒前
zhenghang完成签到,获得积分10
12秒前
阿斯蒂芬完成签到,获得积分10
12秒前
Hello应助kobe采纳,获得10
12秒前
桐桐应助候林丽采纳,获得10
13秒前
Tysonqu发布了新的文献求助10
13秒前
15秒前
完美世界应助童宝采纳,获得10
16秒前
Sophie发布了新的文献求助10
16秒前
wsaky关注了科研通微信公众号
16秒前
赵睿发布了新的文献求助10
19秒前
19秒前
充电宝应助啦啦啦啦啦采纳,获得10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
SOFT MATTER SERIES Volume 22 Soft Matter in Foods 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
《2023南京市住宿行业发展报告》 500
Food Microbiology - An Introduction (5th Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4883986
求助须知:如何正确求助?哪些是违规求助? 4169368
关于积分的说明 12937216
捐赠科研通 3929699
什么是DOI,文献DOI怎么找? 2156250
邀请新用户注册赠送积分活动 1174667
关于科研通互助平台的介绍 1079450