亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Electrolyte Effects in Electrocatalytic Kinetics†

化学 动力学 电解质 化学动力学 无机化学 电极 物理化学 物理 量子力学
作者
Xiaoyu Li,Zhiming Zhang,Xinxin Zhuang,Zhen Jia,Tao Wang
出处
期刊:Chinese Journal of Chemistry [Wiley]
卷期号:42 (24): 3533-3552
标识
DOI:10.1002/cjoc.202400458
摘要

Comprehensive Summary Tuning electrolyte properties is a widely recognized strategy to enhance activity and selectivity in electrocatalysis, drawing increasing attention in this domain. Despite extensive experimental and theoretical studies, debates persist about how various electrolyte components influence electrocatalytic reactions. We offer a concise review focusing on current discussions, especially the contentious roles of cations. This article further examines how different factors affect the interfacial solvent structure, particularly the hydrogen‐bonding network, and delves into the microscopic kinetics of electron and proton‐coupled electron transfer. We also discuss the overarching influence of solvents from a kinetic modeling perspective, aiming to develop a robust correlation between electrolyte structure and reactivity. Lastly, we summarize ongoing research challenges and suggest potential directions for future studies on electrolyte effects in electrocatalysis. Key Scientists In 1956, Marcus theory was developed to describe the mechanism of outer‐sphere electron transfer (OS‐ET). In 1992, Nocera et al. directly measured proton‐coupled electron transfer (PCET) kinetics for the first time, and their subsequent research in 1995 investigated the effects of proton motion on electron transfer (ET) kinetics. In 1999 and 2000, Hammes‐schiffer et al. developed the multistate continuum theory for multiple charge reactions and deduced the rate expressions for nonadiabatic PCET reactions in solution, laying the theoretical foundation for the analysis of PCET kinetics in electrochemical processes. In 2006, Saveant et al. verified the concerted proton and electron transfer (CPET) mechanism in the oxidation of phenols coupled with intramolecular amine‐driven proton transfer (PT). Their subsequent work in 2008 reported the pH‐dependent pathways of electrochemical oxidation of phenols. Electrolyte effects in electrocatalysis have gained emphasis in recent years. In 2009, Markovic's pioneering work proposed non‐covalent interactions between hydrated alkaline cations and adsorbed OH species in oxygen reduction reaction (ORR)/hydrogen oxidation reaction (HOR). In 2011, Markovic et al. significantly enhanced hydrogen evolution reaction (HER) activity in alkaline solution by improving water dissociation, which was assumed to dominate the sluggish HER kinetics in such media. In comparation, Yan et al. applied hydrogen binding energy (HBE) theory in 2015 to explain the pH‐dependent HER/HOR activity. Cations play a significant role in regulating the selectivity and activity of carbon dioxide reduction (CO 2 RR). In 2016 and 2017, Karen Chan et al. introduced the electric field generated by solvated cations to explain the cation effects on electrochemical CO2RR. Conversely, in 2021, Koper et al. suggested that short‐range electrostatic interactions between partially desolvated metal cations and CO 2 stabilized CO 2 and promoted CO 2 RR. Recent researches have combined the exploration of the electrical double layer (EDL) structure with theoretical analysis of PCET kinetics. In 2019, Huang et al. developed a microscopic Hamiltonian model to quantitatively understand the sluggish hydrogen electrocatalysis in alkaline media. In 2021, two meticulous studies from Shao‐Horn's group analyzed the effects of cations on reorganization energy and the impacts of hydrogen bonds between proton donors and acceptors on proton tunneling kinetics, respectively. Electrolyte effects on proton transport process were researched in recent years. In 2022, Hu et al. and Chen et al. proposed that the cation‐induced electric field distribution and pH‐dependent hydrogen bonding network connectivity played essential roles in proton transport, separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xz完成签到 ,获得积分10
7秒前
XIN发布了新的文献求助10
7秒前
XIN完成签到,获得积分10
16秒前
43秒前
qiuxuan100发布了新的文献求助10
43秒前
2分钟前
3分钟前
ding应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
Lucas应助强健的柚子采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
大脸猫完成签到 ,获得积分10
5分钟前
yaoyao发布了新的文献求助10
5分钟前
chiazy完成签到 ,获得积分10
5分钟前
5分钟前
通科研完成签到 ,获得积分10
6分钟前
6分钟前
DrleedsG完成签到,获得积分10
6分钟前
DrleedsG发布了新的文献求助10
7分钟前
7分钟前
7分钟前
liner完成签到 ,获得积分10
7分钟前
7分钟前
8分钟前
星宫韩立完成签到 ,获得积分10
8分钟前
9分钟前
10分钟前
10分钟前
10分钟前
小马甲应助科研通管家采纳,获得10
11分钟前
11分钟前
11分钟前
锦鲤完成签到 ,获得积分10
11分钟前
12分钟前
Later完成签到,获得积分20
12分钟前
13分钟前
景泰蓝完成签到,获得积分10
13分钟前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
MATLAB在传热学例题中的应用 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3303289
求助须知:如何正确求助?哪些是违规求助? 2937611
关于积分的说明 8482551
捐赠科研通 2611482
什么是DOI,文献DOI怎么找? 1425949
科研通“疑难数据库(出版商)”最低求助积分说明 662457
邀请新用户注册赠送积分活动 647005