已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Electrolyte Effects in Electrocatalytic Kinetics†

化学 动力学 电解质 化学动力学 无机化学 电极 物理化学 物理 量子力学
作者
Xiaoyu Li,Zhiming Zhang,Xinxin Zhuang,Zhen Jia,Tao Wang
出处
期刊:Chinese Journal of Chemistry [Wiley]
卷期号:42 (24): 3533-3552
标识
DOI:10.1002/cjoc.202400458
摘要

Comprehensive Summary Tuning electrolyte properties is a widely recognized strategy to enhance activity and selectivity in electrocatalysis, drawing increasing attention in this domain. Despite extensive experimental and theoretical studies, debates persist about how various electrolyte components influence electrocatalytic reactions. We offer a concise review focusing on current discussions, especially the contentious roles of cations. This article further examines how different factors affect the interfacial solvent structure, particularly the hydrogen‐bonding network, and delves into the microscopic kinetics of electron and proton‐coupled electron transfer. We also discuss the overarching influence of solvents from a kinetic modeling perspective, aiming to develop a robust correlation between electrolyte structure and reactivity. Lastly, we summarize ongoing research challenges and suggest potential directions for future studies on electrolyte effects in electrocatalysis. Key Scientists In 1956, Marcus theory was developed to describe the mechanism of outer‐sphere electron transfer (OS‐ET). In 1992, Nocera et al. directly measured proton‐coupled electron transfer (PCET) kinetics for the first time, and their subsequent research in 1995 investigated the effects of proton motion on electron transfer (ET) kinetics. In 1999 and 2000, Hammes‐schiffer et al. developed the multistate continuum theory for multiple charge reactions and deduced the rate expressions for nonadiabatic PCET reactions in solution, laying the theoretical foundation for the analysis of PCET kinetics in electrochemical processes. In 2006, Saveant et al. verified the concerted proton and electron transfer (CPET) mechanism in the oxidation of phenols coupled with intramolecular amine‐driven proton transfer (PT). Their subsequent work in 2008 reported the pH‐dependent pathways of electrochemical oxidation of phenols. Electrolyte effects in electrocatalysis have gained emphasis in recent years. In 2009, Markovic's pioneering work proposed non‐covalent interactions between hydrated alkaline cations and adsorbed OH species in oxygen reduction reaction (ORR)/hydrogen oxidation reaction (HOR). In 2011, Markovic et al. significantly enhanced hydrogen evolution reaction (HER) activity in alkaline solution by improving water dissociation, which was assumed to dominate the sluggish HER kinetics in such media. In comparation, Yan et al. applied hydrogen binding energy (HBE) theory in 2015 to explain the pH‐dependent HER/HOR activity. Cations play a significant role in regulating the selectivity and activity of carbon dioxide reduction (CO 2 RR). In 2016 and 2017, Karen Chan et al. introduced the electric field generated by solvated cations to explain the cation effects on electrochemical CO2RR. Conversely, in 2021, Koper et al. suggested that short‐range electrostatic interactions between partially desolvated metal cations and CO 2 stabilized CO 2 and promoted CO 2 RR. Recent researches have combined the exploration of the electrical double layer (EDL) structure with theoretical analysis of PCET kinetics. In 2019, Huang et al. developed a microscopic Hamiltonian model to quantitatively understand the sluggish hydrogen electrocatalysis in alkaline media. In 2021, two meticulous studies from Shao‐Horn's group analyzed the effects of cations on reorganization energy and the impacts of hydrogen bonds between proton donors and acceptors on proton tunneling kinetics, respectively. Electrolyte effects on proton transport process were researched in recent years. In 2022, Hu et al. and Chen et al. proposed that the cation‐induced electric field distribution and pH‐dependent hydrogen bonding network connectivity played essential roles in proton transport, separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
852应助科研通管家采纳,获得10
3秒前
bkagyin应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
Rondab应助科研通管家采纳,获得10
3秒前
3秒前
wanci应助科研通管家采纳,获得30
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
bxxxxx应助科研通管家采纳,获得30
3秒前
搜集达人应助科研通管家采纳,获得30
3秒前
3秒前
生动丑应助科研通管家采纳,获得10
3秒前
zp6666tql完成签到 ,获得积分10
5秒前
李健的小迷弟应助maleo采纳,获得30
5秒前
LXY发布了新的文献求助10
6秒前
leyellows完成签到 ,获得积分10
7秒前
翟大有完成签到 ,获得积分0
7秒前
花花521完成签到,获得积分10
10秒前
欧阳完成签到 ,获得积分10
10秒前
傲娇的棉花糖完成签到 ,获得积分10
13秒前
苏小北完成签到 ,获得积分10
14秒前
shweah2003完成签到,获得积分0
16秒前
Owen应助怡然的迎波采纳,获得10
22秒前
萌娜梨裟完成签到 ,获得积分10
23秒前
Leviathan完成签到 ,获得积分10
26秒前
嘉琳完成签到 ,获得积分10
28秒前
29秒前
33秒前
38秒前
starry完成签到 ,获得积分10
39秒前
40秒前
40秒前
英勇的白风完成签到,获得积分10
43秒前
rick3455完成签到 ,获得积分10
44秒前
w1x2123完成签到,获得积分10
45秒前
窝窝发布了新的文献求助10
45秒前
乐乐乐乐乐乐应助andrele采纳,获得10
49秒前
50秒前
怡然的迎波完成签到,获得积分10
50秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Aktuelle Entwicklungen in der linguistischen Forschung 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989972
求助须知:如何正确求助?哪些是违规求助? 3532034
关于积分的说明 11256042
捐赠科研通 3270884
什么是DOI,文献DOI怎么找? 1805093
邀请新用户注册赠送积分活动 882256
科研通“疑难数据库(出版商)”最低求助积分说明 809216