Electrolyte Effects in Electrocatalytic Kinetics†

化学 动力学 电解质 化学动力学 无机化学 电极 物理化学 量子力学 物理
作者
Xiaoyu Li,Zhiming Zhang,Xinxin Zhuang,Zhen Jia,Tao Wang
出处
期刊:Chinese Journal of Chemistry [Wiley]
卷期号:42 (24): 3533-3552
标识
DOI:10.1002/cjoc.202400458
摘要

Comprehensive Summary Tuning electrolyte properties is a widely recognized strategy to enhance activity and selectivity in electrocatalysis, drawing increasing attention in this domain. Despite extensive experimental and theoretical studies, debates persist about how various electrolyte components influence electrocatalytic reactions. We offer a concise review focusing on current discussions, especially the contentious roles of cations. This article further examines how different factors affect the interfacial solvent structure, particularly the hydrogen‐bonding network, and delves into the microscopic kinetics of electron and proton‐coupled electron transfer. We also discuss the overarching influence of solvents from a kinetic modeling perspective, aiming to develop a robust correlation between electrolyte structure and reactivity. Lastly, we summarize ongoing research challenges and suggest potential directions for future studies on electrolyte effects in electrocatalysis. Key Scientists In 1956, Marcus theory was developed to describe the mechanism of outer‐sphere electron transfer (OS‐ET). In 1992, Nocera et al. directly measured proton‐coupled electron transfer (PCET) kinetics for the first time, and their subsequent research in 1995 investigated the effects of proton motion on electron transfer (ET) kinetics. In 1999 and 2000, Hammes‐schiffer et al. developed the multistate continuum theory for multiple charge reactions and deduced the rate expressions for nonadiabatic PCET reactions in solution, laying the theoretical foundation for the analysis of PCET kinetics in electrochemical processes. In 2006, Saveant et al. verified the concerted proton and electron transfer (CPET) mechanism in the oxidation of phenols coupled with intramolecular amine‐driven proton transfer (PT). Their subsequent work in 2008 reported the pH‐dependent pathways of electrochemical oxidation of phenols. Electrolyte effects in electrocatalysis have gained emphasis in recent years. In 2009, Markovic's pioneering work proposed non‐covalent interactions between hydrated alkaline cations and adsorbed OH species in oxygen reduction reaction (ORR)/hydrogen oxidation reaction (HOR). In 2011, Markovic et al. significantly enhanced hydrogen evolution reaction (HER) activity in alkaline solution by improving water dissociation, which was assumed to dominate the sluggish HER kinetics in such media. In comparation, Yan et al. applied hydrogen binding energy (HBE) theory in 2015 to explain the pH‐dependent HER/HOR activity. Cations play a significant role in regulating the selectivity and activity of carbon dioxide reduction (CO 2 RR). In 2016 and 2017, Karen Chan et al. introduced the electric field generated by solvated cations to explain the cation effects on electrochemical CO2RR. Conversely, in 2021, Koper et al. suggested that short‐range electrostatic interactions between partially desolvated metal cations and CO 2 stabilized CO 2 and promoted CO 2 RR. Recent researches have combined the exploration of the electrical double layer (EDL) structure with theoretical analysis of PCET kinetics. In 2019, Huang et al. developed a microscopic Hamiltonian model to quantitatively understand the sluggish hydrogen electrocatalysis in alkaline media. In 2021, two meticulous studies from Shao‐Horn's group analyzed the effects of cations on reorganization energy and the impacts of hydrogen bonds between proton donors and acceptors on proton tunneling kinetics, respectively. Electrolyte effects on proton transport process were researched in recent years. In 2022, Hu et al. and Chen et al. proposed that the cation‐induced electric field distribution and pH‐dependent hydrogen bonding network connectivity played essential roles in proton transport, separately.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爆米花应助孙文杰采纳,获得10
刚刚
小艾完成签到,获得积分10
刚刚
明理萃完成签到 ,获得积分10
1秒前
苏黎世发布了新的文献求助10
1秒前
2秒前
乔安发布了新的文献求助10
2秒前
炫哥IRIS发布了新的文献求助10
2秒前
LaTeXer给积极行天的求助进行了留言
3秒前
ww发布了新的文献求助10
3秒前
Carlo完成签到,获得积分10
4秒前
蓝胖子完成签到 ,获得积分10
5秒前
6秒前
终生科研徒刑完成签到 ,获得积分10
6秒前
7秒前
ysc发布了新的文献求助20
9秒前
10秒前
LKX完成签到 ,获得积分10
10秒前
纯真的诗兰完成签到,获得积分10
11秒前
自然函完成签到 ,获得积分10
11秒前
等一个晴天完成签到,获得积分10
12秒前
as发布了新的文献求助100
12秒前
天天快乐应助科研通管家采纳,获得10
12秒前
研友_VZG7GZ应助科研通管家采纳,获得10
12秒前
个性元枫应助科研通管家采纳,获得10
12秒前
kingwill应助科研通管家采纳,获得20
12秒前
顾矜应助科研通管家采纳,获得10
12秒前
12秒前
慕青应助科研通管家采纳,获得10
12秒前
今后应助科研通管家采纳,获得10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
Hello应助科研通管家采纳,获得10
12秒前
小蘑菇应助科研通管家采纳,获得10
12秒前
Ava应助科研通管家采纳,获得10
13秒前
海东来应助科研通管家采纳,获得30
13秒前
JamesPei应助科研通管家采纳,获得10
13秒前
个性元枫应助科研通管家采纳,获得10
13秒前
茕凡桃七完成签到,获得积分10
13秒前
大个应助科研通管家采纳,获得10
13秒前
所所应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得30
13秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038446
求助须知:如何正确求助?哪些是违规求助? 3576149
关于积分的说明 11374627
捐赠科研通 3305875
什么是DOI,文献DOI怎么找? 1819354
邀请新用户注册赠送积分活动 892680
科研通“疑难数据库(出版商)”最低求助积分说明 815048