化学信息学
药效团
化学空间
空格(标点符号)
数量结构-活动关系
虚拟筛选
计算生物学
计算机科学
化学
理论计算机科学
组合化学
计算化学
生物
立体化学
药物发现
生物化学
操作系统
作者
Maroua Lejmi,Damien Geslin,Ronan Bureau,Bertrand Cuissart,Ilef Ben Slima,Nida Meddouri,Amel Borgi,Jean–Luc Lamotte,Alban Lepailleur
标识
DOI:10.1002/minf.202400050
摘要
Abstract The exploration of chemical space is a fundamental aspect of chemoinformatics, particularly when one explores a large compound data set to relate chemical structures with molecular properties. In this study, we extend our previous work on chemical space visualization at the pharmacophoric level. Instead of using conventional binary classification of affinity (active vs inactive), we introduce a refined approach that categorizes compounds into four distinct classes based on their activity levels: super active, very active, active, and inactive. This classification enriches the color scheme applied to pharmacophore space, where the color representation of a pharmacophore hypothesis is driven by the associated compounds. Using the BCR‐ABL tyrosine kinase as a case study, we identified intriguing regions corresponding to pharmacophore activity discontinuities, providing valuable insights for structure‐activity relationships analysis.
科研通智能强力驱动
Strongly Powered by AbleSci AI