作者
Yuhong Guo,Xiling Chen,Jinhong Li,qi Wang,Shuangyu Zhang,Nuoxuan Liu,Yanlong Zhang,Tengxun Zhang
摘要
Abstract Prunus mume (mei), a traditional ornamental plant in China, is renowned for its fragrant flowers, primarily emitted by its petals. However, the cell types of mei petals and where floral volatile synthesis occurs are rarely reported. The study used single-cell RNA sequencing to characterize the gene expression landscape in petals of P. mume ‘Fenhong Zhusha’ at budding stage (BS) and the full-blooming stage (FS). Six major cell types of petals were identified: epidermal cells (ECs), parenchyma cells (PCs), xylem parenchyma cells, phloem parenchyma cells, xylem vessels and fibers, and sieve elements and companion cells complex. Cell-specific marker genes in each cell type were provided. Floral volatiles from mei petals were measured at four flowering development stages, and their emissions increased from BS to FS, and decreased at the withering stage. Fifty-eight differentially expressed genes (DEGs) in benzenoid/phenylpropanoid pathway were screened using bulk RNA-seq data. Twenty-eight DEGs expression increased from BS to FS, indicating that they might play roles in floral volatile synthesis in P. mume, among which PmBAHD3 would participate in benzyl acetate synthesis. ScRNA-seq data showed that 27 DEGs mentioned above were expressed variously in different cell types. In situ hybridization confirmed that PmPAL2, PmCAD1, PmBAHD3,5, and PmEGS1 involved in floral volatile synthesis in mei petals are mainly expressed in EC, PC, and most vascular tissues, consistent with scRNA-seq data. The result indicates that benzyl acetate and eugenol, the characteristic volatiles in mei, are mostly synthesized in these cell types. The first petal single-cell atlas was constructed, offering new insights into the molecular mechanism of floral volatile synthesis.