Optical materials discovery and design via federated databases and machine learning

计算机科学 数据库 情报检索
作者
Victor Trinquet,Matthew L. Evans,Chantal E. Hargreaves,Pierre-Paul De Breuck,Gian‐Marco Rignanese
出处
期刊:Faraday Discussions [Royal Society of Chemistry]
被引量:1
标识
DOI:10.1039/d4fd00092g
摘要

Combinatorial and guided screening of materials space with density-functional theory and related approaches has provided a wealth of hypothetical inorganic materials, which are increasingly tabulated in open databases. The OPTIMADE API is a standardised format for representing crystal structures, their measured and computed properties, and the methods for querying and filtering them from remote resources. Currently, the OPTIMADE federation spans over 20 data providers, rendering over 30 million structures accessible in this way, many of which are novel and have only recently been suggested by machine learning-based approaches. In this work, we outline our approach to non-exhaustively screen this dynamic trove of structures for the next-generation of optical materials. By applying MODNet, a neural network-based model for property prediction, within a combined active learning and high-throughput computation framework, we isolate particular structures and chemistries that should be most fruitful for further theoretical calculations and for experimental study as high-refractive-index materials. By making explicit use of automated calculations, federated dataset curation and machine learning, and by releasing these publicly, the workflows presented here can be periodically re-assessed as new databases implement OPTIMADE, and new hypothetical materials are suggested.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
tina3058发布了新的文献求助10
1秒前
磁带机发布了新的文献求助10
1秒前
1秒前
2秒前
3秒前
verbal2005发布了新的文献求助10
3秒前
4秒前
祁媛媛关注了科研通微信公众号
4秒前
量子星尘发布了新的文献求助10
4秒前
4秒前
六六七七完成签到,获得积分10
5秒前
5秒前
科目三应助咻咻采纳,获得10
5秒前
zh发布了新的文献求助10
5秒前
6秒前
7秒前
杰杰发布了新的文献求助10
8秒前
9秒前
10秒前
乖拉发布了新的文献求助10
12秒前
13秒前
晓晓发布了新的文献求助10
14秒前
量子星尘发布了新的文献求助10
15秒前
DTL哈哈完成签到 ,获得积分10
17秒前
17秒前
科研通AI5应助zzhhhzz采纳,获得10
18秒前
tina3058完成签到,获得积分10
19秒前
舟舟完成签到,获得积分10
19秒前
20秒前
认真的机器猫完成签到,获得积分10
20秒前
22秒前
杜若飞发布了新的文献求助10
22秒前
赵小胖完成签到,获得积分10
23秒前
24秒前
黎周二完成签到,获得积分10
24秒前
微笑采文发布了新的文献求助10
25秒前
ali完成签到 ,获得积分10
25秒前
香蕉觅云应助杰杰采纳,获得10
26秒前
量子星尘发布了新的文献求助10
27秒前
zh发布了新的文献求助10
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
An experimental and analytical investigation on the fatigue behaviour of fuselage riveted lap joints: The significance of the rivet squeeze force, and a comparison of 2024-T3 and Glare 3 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
Statistical Methods for the Social Sciences, Global Edition, 6th edition 600
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
ALUMINUM STANDARDS AND DATA 500
Walter Gilbert: Selected Works 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3664528
求助须知:如何正确求助?哪些是违规求助? 3224505
关于积分的说明 9757908
捐赠科研通 2934419
什么是DOI,文献DOI怎么找? 1606858
邀请新用户注册赠送积分活动 758873
科研通“疑难数据库(出版商)”最低求助积分说明 735018