Effect of Deep Learning Image Reconstruction Algorithms on Radiomic Features of Pulmonary Nodules in Ultra-Low-Dose CT

医学 再现性 核医学 组内相关 迭代重建 断层摄影术 算法 特征(语言学) 放射科 数学 统计 语言学 哲学
作者
Zhijuan Zheng,Yuying Liang,Zhehao Wu,Qijia Han,Zhu Ai,Kun Ma,Zhiming Xiang
出处
期刊:Journal of Computer Assisted Tomography [Ovid Technologies (Wolters Kluwer)]
卷期号:48 (6): 943-950
标识
DOI:10.1097/rct.0000000000001634
摘要

Objective The purpose of this study is to explore the impact of deep learning image reconstruction (DLIR) algorithm on the quantification of radiomic features in ultra-low-dose computed tomography (ULD-CT) compared with adaptive statistical iterative reconstruction-Veo (ASIR-V). Methods One hundred eighty-three patients with pulmonary nodules underwent standard-dose computed tomography (SDCT) (4.30 ± 0.36 mSv) and ULD-CT (UL-A, 0.57 ± 0.09 mSv or UL-B, 0.33 ± 0.04 mSv). SDCT was the reference standard using (ASIR-V) at 50% strength (50%ASIR-V). ULD-CT was reconstructed with 50%ASIR-V, DLIR at medium and high strength (DLIR-M, DLIR-H). Radiomics analysis extracted 102 features, and the intraclass correlation coefficient (ICC) quantified reproducibility between ULD-CT and SDCT reconstructed by 50%ASIR-V, DLIR-M, and DLIR-H for each feature. Results Among 102 radiomic features, the percentages of reproducibility of 50%ASIR-V, DLIR-M, and DLIR-H were 48.04% (49/102), 49.02% (50/102), and 52.94% (54/102), respectively. Shape and first order features demonstrated high reproducibility across different reconstruction algorithms and radiation doses, with mean ICC values exceeding 0.75. In texture features, DLIR-M and DLIR-H showed improved mean ICC values for pure ground glass nodules (pGGNs) from 0.69 ± 0.23 to 0.75 ± 0.18 and 0.81 ± 0.12, respectively, compared with 50%ASIR-V. Similarly, the mean ICC values for solid nodules (SNs) increased from 0.60 ± 0.19 to 0.66 ± 0.14 and 0.69 ± 0.13, respectively. Additionally, the mean ICC values of texture features for pGGNs and SNs in both ULD-CT groups decreased with reduced radiation dose. Conclusions DLIR can improve the reproducibility of radiomic features at ultra-low doses compared with ASIR-V. In addition, pGGNs showed better reproducibility at ultra-low doses than SNs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhongyinanke完成签到 ,获得积分10
刚刚
1秒前
6wdhw完成签到,获得积分10
1秒前
2秒前
2秒前
3秒前
CoverSx发布了新的文献求助10
3秒前
潇洒荷花完成签到 ,获得积分10
3秒前
zhoujunjie完成签到,获得积分10
4秒前
4秒前
4秒前
小李完成签到,获得积分10
5秒前
xyhxyh完成签到,获得积分10
6秒前
6秒前
xxxxy1122发布了新的文献求助10
8秒前
xingper发布了新的文献求助10
8秒前
Suaia完成签到,获得积分10
8秒前
8秒前
喜来乐完成签到,获得积分10
8秒前
秀丽凡儿发布了新的文献求助10
8秒前
Thi发布了新的文献求助10
9秒前
云朵0810完成签到,获得积分10
9秒前
高斯发布了新的文献求助10
10秒前
LHT发布了新的文献求助10
10秒前
Wy发布了新的文献求助30
10秒前
10秒前
JamesPei应助方瑞豪采纳,获得10
10秒前
Kk完成签到,获得积分10
12秒前
12秒前
Levy发布了新的文献求助10
13秒前
时旿完成签到,获得积分10
15秒前
田様应助野鼠城狐采纳,获得10
16秒前
SanAruba完成签到,获得积分10
16秒前
jennyru完成签到,获得积分10
16秒前
你好谢谢你完成签到,获得积分20
17秒前
爱听歌酸奶完成签到,获得积分10
18秒前
等待映阳发布了新的文献求助10
19秒前
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5588962
求助须知:如何正确求助?哪些是违规求助? 4671741
关于积分的说明 14789385
捐赠科研通 4626869
什么是DOI,文献DOI怎么找? 2532017
邀请新用户注册赠送积分活动 1500619
关于科研通互助平台的介绍 1468373