A Lightweight Cotton Verticillium Wilt Hazard Level Real-Time Assessment System Based on an Improved YOLOv10n Model

黄萎病 危害 黄萎病 危险模型 生物 危害分析 环境科学 农学 植物 工程类 可靠性工程 数学 生态学 计量经济学
作者
Juan Liao,Xinying He,Yexiong Liang,Li Wang,H. Zeng,Xiwen Luo,Xiaomin Li,Lei Zhang,Xing He,Ying Zang
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (9): 1617-1617 被引量:1
标识
DOI:10.3390/agriculture14091617
摘要

Compared to traditional manual methods for assessing the cotton verticillium wilt (CVW) hazard level, utilizing deep learning models for foliage segmentation can significantly improve the evaluation accuracy. However, instance segmentation methods for images with complex backgrounds often suffer from low accuracy and delayed segmentation. To address this issue, an improved model, YOLO-VW, with high accuracy, high efficiency, and a light weight, was proposed for CVW hazard level assessment based on the YOLOv10n model. (1) It replaced conventional convolutions with the lightweight GhostConv, reducing the computational time. (2) The STC module based on the Swin Transformer enhanced the expression of foliage and disease spot boundary features, further reducing the model size. (3) It integrated a squeeze-and-excitation (SE) attention mechanism to suppress irrelevant background information. (4) It employed the stochastic gradient descent (SGD) optimizer to enhance the performance and shorten the detection time. The improved CVW severity assessment model was then deployed on a server, and a real-time detection application (APP) for CVW severity assessment was developed based on this model. The results indicated the following. (1) The YOLO-VW model achieved a mean average precision (mAP) of 89.2% and a frame per second (FPS) rate of 157.98 f/s in assessing CVW, representing improvements of 2.4% and 21.37 f/s over the original model, respectively. (2) The YOLO-VW model’s parameters and floating point operations per second (FLOPs) were 1.59 M and 7.8 G, respectively, compressed by 44% and 33.9% compared to the original YOLOv10n model. (3) After deploying the YOLO-VW model on a smartphone, the processing time for each image was 2.42 s, and the evaluation accuracy under various environmental conditions reached 85.5%, representing a 15% improvement compared to the original YOLOv10n model. Based on these findings, YOLO-VW meets the requirements for real-time detection, offering greater robustness, efficiency, and portability in practical applications. This model provides technical support for controlling CVW and developing cotton varieties resistant to verticillium wilt.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rottyyii完成签到,获得积分20
刚刚
慕青应助失眠的流沙采纳,获得10
刚刚
星星完成签到 ,获得积分10
1秒前
褚香旋完成签到,获得积分10
1秒前
1秒前
Lucas应助zt采纳,获得10
3秒前
peng123完成签到,获得积分20
4秒前
4秒前
禹冷玉完成签到,获得积分10
5秒前
zzz发布了新的文献求助10
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
euler发布了新的文献求助10
7秒前
XIXIXI发布了新的文献求助10
10秒前
li完成签到,获得积分10
10秒前
小蘑菇应助失眠的流沙采纳,获得10
10秒前
10秒前
peng123发布了新的文献求助10
11秒前
无糖零脂发布了新的文献求助10
11秒前
鹿傥发布了新的文献求助10
12秒前
12秒前
323431完成签到,获得积分10
13秒前
充电宝应助whuhustwit采纳,获得10
13秒前
13秒前
14秒前
15秒前
李伟完成签到,获得积分10
15秒前
16秒前
上官若男应助柔弱云朵采纳,获得10
16秒前
小魔女完成签到,获得积分10
16秒前
Hello应助浮晨采纳,获得10
17秒前
17秒前
汉堡包应助四糸乃采纳,获得10
18秒前
七号楼少女完成签到,获得积分10
19秒前
19秒前
Aoren完成签到,获得积分10
19秒前
19秒前
19秒前
任秦发布了新的文献求助10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Linear and Nonlinear Functional Analysis with Applications, Second Edition 388
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5577678
求助须知:如何正确求助?哪些是违规求助? 4662703
关于积分的说明 14743115
捐赠科研通 4603383
什么是DOI,文献DOI怎么找? 2526334
邀请新用户注册赠送积分活动 1496100
关于科研通互助平台的介绍 1465546