A Lightweight Cotton Verticillium Wilt Hazard Level Real-Time Assessment System Based on an Improved YOLOv10n Model

黄萎病 危害 黄萎病 危险模型 生物 危害分析 环境科学 农学 植物 工程类 可靠性工程 数学 生态学 计量经济学
作者
Juan Liao,Xinying He,Yexiong Liang,Li Wang,H. Zeng,Xiwen Luo,Xiaomin Li,Lei Zhang,Xing He,Ying Zang
出处
期刊:Agriculture [Multidisciplinary Digital Publishing Institute]
卷期号:14 (9): 1617-1617 被引量:1
标识
DOI:10.3390/agriculture14091617
摘要

Compared to traditional manual methods for assessing the cotton verticillium wilt (CVW) hazard level, utilizing deep learning models for foliage segmentation can significantly improve the evaluation accuracy. However, instance segmentation methods for images with complex backgrounds often suffer from low accuracy and delayed segmentation. To address this issue, an improved model, YOLO-VW, with high accuracy, high efficiency, and a light weight, was proposed for CVW hazard level assessment based on the YOLOv10n model. (1) It replaced conventional convolutions with the lightweight GhostConv, reducing the computational time. (2) The STC module based on the Swin Transformer enhanced the expression of foliage and disease spot boundary features, further reducing the model size. (3) It integrated a squeeze-and-excitation (SE) attention mechanism to suppress irrelevant background information. (4) It employed the stochastic gradient descent (SGD) optimizer to enhance the performance and shorten the detection time. The improved CVW severity assessment model was then deployed on a server, and a real-time detection application (APP) for CVW severity assessment was developed based on this model. The results indicated the following. (1) The YOLO-VW model achieved a mean average precision (mAP) of 89.2% and a frame per second (FPS) rate of 157.98 f/s in assessing CVW, representing improvements of 2.4% and 21.37 f/s over the original model, respectively. (2) The YOLO-VW model’s parameters and floating point operations per second (FLOPs) were 1.59 M and 7.8 G, respectively, compressed by 44% and 33.9% compared to the original YOLOv10n model. (3) After deploying the YOLO-VW model on a smartphone, the processing time for each image was 2.42 s, and the evaluation accuracy under various environmental conditions reached 85.5%, representing a 15% improvement compared to the original YOLOv10n model. Based on these findings, YOLO-VW meets the requirements for real-time detection, offering greater robustness, efficiency, and portability in practical applications. This model provides technical support for controlling CVW and developing cotton varieties resistant to verticillium wilt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
sandra关注了科研通微信公众号
2秒前
5秒前
6秒前
7秒前
7秒前
彭于晏应助南笙采纳,获得30
7秒前
7秒前
wdy111完成签到,获得积分10
8秒前
8秒前
ding应助lucas采纳,获得10
8秒前
千空发布了新的文献求助10
9秒前
9秒前
可爱的函函应助宋宋采纳,获得10
9秒前
贾文斌完成签到,获得积分10
11秒前
kai发布了新的文献求助10
11秒前
韩涵发布了新的文献求助10
12秒前
ZZ发布了新的文献求助10
12秒前
13秒前
vanshaw.vs发布了新的文献求助10
14秒前
14秒前
14秒前
Jasper应助LuoYixiang采纳,获得10
15秒前
Orange应助谢嘻嘻嘻嘻采纳,获得10
16秒前
18秒前
牛牛牛应助king采纳,获得10
18秒前
19秒前
20秒前
SRQ发布了新的文献求助10
22秒前
22秒前
22秒前
22秒前
22秒前
尼大王完成签到,获得积分10
22秒前
23秒前
含糊的文涛完成签到,获得积分10
24秒前
wu完成签到,获得积分10
24秒前
24秒前
24秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524030
关于积分的说明 11219577
捐赠科研通 3261464
什么是DOI,文献DOI怎么找? 1800674
邀请新用户注册赠送积分活动 879241
科研通“疑难数据库(出版商)”最低求助积分说明 807226