A Lightweight Cotton Verticillium Wilt Hazard Level Real-Time Assessment System Based on an Improved YOLOv10n Model

黄萎病 危害 黄萎病 危险模型 生物 危害分析 环境科学 农学 植物 工程类 可靠性工程 数学 生态学 计量经济学
作者
Juan Liao,Xinying He,Yexiong Liang,Li Wang,H. Zeng,Xiwen Luo,Xiaomin Li,Lei Zhang,Xing He,Ying Zang
出处
期刊:Agriculture [MDPI AG]
卷期号:14 (9): 1617-1617 被引量:1
标识
DOI:10.3390/agriculture14091617
摘要

Compared to traditional manual methods for assessing the cotton verticillium wilt (CVW) hazard level, utilizing deep learning models for foliage segmentation can significantly improve the evaluation accuracy. However, instance segmentation methods for images with complex backgrounds often suffer from low accuracy and delayed segmentation. To address this issue, an improved model, YOLO-VW, with high accuracy, high efficiency, and a light weight, was proposed for CVW hazard level assessment based on the YOLOv10n model. (1) It replaced conventional convolutions with the lightweight GhostConv, reducing the computational time. (2) The STC module based on the Swin Transformer enhanced the expression of foliage and disease spot boundary features, further reducing the model size. (3) It integrated a squeeze-and-excitation (SE) attention mechanism to suppress irrelevant background information. (4) It employed the stochastic gradient descent (SGD) optimizer to enhance the performance and shorten the detection time. The improved CVW severity assessment model was then deployed on a server, and a real-time detection application (APP) for CVW severity assessment was developed based on this model. The results indicated the following. (1) The YOLO-VW model achieved a mean average precision (mAP) of 89.2% and a frame per second (FPS) rate of 157.98 f/s in assessing CVW, representing improvements of 2.4% and 21.37 f/s over the original model, respectively. (2) The YOLO-VW model’s parameters and floating point operations per second (FLOPs) were 1.59 M and 7.8 G, respectively, compressed by 44% and 33.9% compared to the original YOLOv10n model. (3) After deploying the YOLO-VW model on a smartphone, the processing time for each image was 2.42 s, and the evaluation accuracy under various environmental conditions reached 85.5%, representing a 15% improvement compared to the original YOLOv10n model. Based on these findings, YOLO-VW meets the requirements for real-time detection, offering greater robustness, efficiency, and portability in practical applications. This model provides technical support for controlling CVW and developing cotton varieties resistant to verticillium wilt.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
MesureWu完成签到,获得积分10
刚刚
李春普完成签到,获得积分10
刚刚
1秒前
情怀应助小巧皮卡丘采纳,获得10
1秒前
1秒前
科研通AI2S应助大胆寒风采纳,获得10
1秒前
2秒前
2秒前
可可完成签到,获得积分10
2秒前
西瓜酱完成签到,获得积分20
3秒前
今后应助最爱炸里脊采纳,获得10
3秒前
3秒前
背后的萧完成签到,获得积分10
3秒前
安输发布了新的文献求助30
3秒前
3秒前
4秒前
中华有为完成签到,获得积分10
4秒前
流光发布了新的文献求助10
4秒前
5秒前
5秒前
cara完成签到,获得积分20
5秒前
5秒前
橙子发布了新的文献求助10
5秒前
霜之哀伤完成签到,获得积分10
6秒前
6秒前
bkagyin应助无限的依波采纳,获得10
6秒前
yyygc完成签到,获得积分10
7秒前
jing完成签到,获得积分10
7秒前
城市猎人发布了新的文献求助10
7秒前
TEN发布了新的文献求助10
7秒前
7秒前
Huang发布了新的文献求助10
7秒前
嘻嘻应助xielunwen采纳,获得10
8秒前
嗯哼完成签到,获得积分10
8秒前
9秒前
chenxt发布了新的文献求助10
9秒前
9秒前
cara发布了新的文献求助20
10秒前
十一发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5283704
求助须知:如何正确求助?哪些是违规求助? 4437469
关于积分的说明 13813675
捐赠科研通 4318220
什么是DOI,文献DOI怎么找? 2370348
邀请新用户注册赠送积分活动 1365683
关于科研通互助平台的介绍 1329143