已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Diffusion probabilistic priors for zero‐shot low‐dose CT image denoising

人工智能 最大后验估计 降噪 先验概率 计算机科学 医学影像学 噪音(视频) 模式识别(心理学) 计算机视觉 迭代重建 图像质量 图像(数学) 数学 贝叶斯概率 统计 最大似然
作者
Xuan Liu,Yaoqin Xie,Chenbin Liu,Jun Cheng,Songhui Diao,Shan Tan,Xiaokun Liang
出处
期刊:Medical Physics [Wiley]
被引量:5
标识
DOI:10.1002/mp.17431
摘要

Abstract Background Denoising low‐dose computed tomography (CT) images is a critical task in medical image computing. Supervised deep learning‐based approaches have made significant advancements in this area in recent years. However, these methods typically require pairs of low‐dose and normal‐dose CT images for training, which are challenging to obtain in clinical settings. Existing unsupervised deep learning‐based methods often require training with a large number of low‐dose CT images or rely on specially designed data acquisition processes to obtain training data. Purpose To address these limitations, we propose a novel unsupervised method that only utilizes normal‐dose CT images during training, enabling zero‐shot denoising of low‐dose CT images. Methods Our method leverages the diffusion model, a powerful generative model. We begin by training a cascaded unconditional diffusion model capable of generating high‐quality normal‐dose CT images from low‐resolution to high‐resolution. The cascaded architecture makes the training of high‐resolution diffusion models more feasible. Subsequently, we introduce low‐dose CT images into the reverse process of the diffusion model as likelihood, combined with the priors provided by the diffusion model and iteratively solve multiple maximum a posteriori (MAP) problems to achieve denoising. Additionally, we propose methods to adaptively adjust the coefficients that balance the likelihood and prior in MAP estimations, allowing for adaptation to different noise levels in low‐dose CT images. Results We test our method on low‐dose CT datasets of different regions with varying dose levels. The results demonstrate that our method outperforms the state‐of‐the‐art unsupervised method and surpasses several supervised deep learning‐based methods. Our method achieves PSNR of 45.02 and 35.35 dB on the abdomen CT dataset and the chest CT dataset, respectively, surpassing the best unsupervised algorithm Noise2Sim in the comparative methods by 0.39 and 0.85 dB, respectively. Conclusions We propose a novel low‐dose CT image denoising method based on diffusion model. Our proposed method only requires normal‐dose CT images as training data, greatly alleviating the data scarcity issue faced by most deep learning‐based methods. At the same time, as an unsupervised algorithm, our method achieves very good qualitative and quantitative results. The Codes are available in https://github.com/DeepXuan/Dn‐Dp .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
4秒前
5秒前
8秒前
薛建伟完成签到 ,获得积分10
8秒前
yy完成签到,获得积分10
9秒前
10秒前
朴素金毛完成签到 ,获得积分10
11秒前
深情安青应助yy采纳,获得10
13秒前
CryBill完成签到,获得积分10
17秒前
科研通AI5应助bubu采纳,获得10
18秒前
丘比特应助嘻嘻嘻嗨学习采纳,获得10
18秒前
20秒前
学土木的凯蒂猫完成签到 ,获得积分10
20秒前
英俊的铭应助追寻的妙松采纳,获得10
21秒前
星流xx完成签到 ,获得积分10
23秒前
所所应助acihk采纳,获得10
24秒前
25秒前
26秒前
Ava应助阿巴阿巴阿采纳,获得10
27秒前
落叶知秋完成签到,获得积分20
27秒前
bbbiupa发布了新的文献求助10
29秒前
31秒前
随心完成签到 ,获得积分10
31秒前
大个应助zz采纳,获得10
31秒前
岁岁平安完成签到,获得积分10
32秒前
科研通AI5应助Magali采纳,获得80
34秒前
月光完成签到 ,获得积分10
34秒前
35秒前
毛毛完成签到 ,获得积分10
36秒前
满意的伊完成签到,获得积分10
36秒前
36秒前
37秒前
叶夜南完成签到 ,获得积分10
37秒前
里里完成签到,获得积分10
37秒前
iamhieuxk给iamhieuxk的求助进行了留言
38秒前
超级小熊猫完成签到 ,获得积分10
38秒前
汉皇高祖完成签到 ,获得积分10
39秒前
Fcy发布了新的文献求助10
41秒前
十月发布了新的文献求助10
41秒前
高分求助中
Continuum Thermodynamics and Material Modelling 4000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3516206
求助须知:如何正确求助?哪些是违规求助? 3098495
关于积分的说明 9239682
捐赠科研通 2793503
什么是DOI,文献DOI怎么找? 1533092
邀请新用户注册赠送积分活动 712561
科研通“疑难数据库(出版商)”最低求助积分说明 707359