Methods for Reducing Ring Artifacts in Tomographic Images Using Wavelet Decomposition and Averaging Techniques

小波 计算机科学 人工智能 计算机视觉
作者
Paweł Lipowicz,Marta Borowska,Agnieszka Dardzińska
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (16): 7292-7292
标识
DOI:10.3390/app14167292
摘要

Computed tomography (CT) is one of the fundamental imaging modalities used in medicine, allowing for the acquisition of accurate cross-sectional images of internal body tissues. However, during the acquisition and reconstruction process, various artifacts can arise, and one of them is ring artifacts. These artifacts result from the inherent limitations of CT scanner components and the properties of the scanned material, such as detector defects, non-uniform distribution of radiation from the source, or the presence of metallic elements within the scanning region. The purpose of this study was to identify and reduce ring artifacts in tomographic images using image decomposition and average filtering methods. In this study, tests were conducted on the effectiveness of identifying ring artifacts using wavelet decomposition methods for images. The test was performed on a Shepp–Logan phantom with implemented artifacts of different intensity levels. The analysis was performed using different wavelet families, and linear approximation methods were used to filter the image in the identified areas. Additional filtering was performed using moving average methods and empirical mode decomposition (EMD) techniques. Image comparison methods, i.e., RMSE, SSIM and MS-SSIM, were used to evaluate performance. The results of this study showed a significant improvement in the quality of tomographic phantom images. The authors obtained more than 50% improvement in image quality with reference to the image without any filtration. The different wavelet families had different efficiencies with relation to the identification of the induction regions of ring artifacts. The Haar wavelet and Coiflet 1 showed the best performance in identifying artifact induction regions, with comparative RMSE values for these wavelets of 0.1477 for Haar and 0.1469 for Coiflet 1. The applied additional moving average filtering and EMD permitted us to improve image quality, which is confirmed by the results of the image comparison. The obtained results allow us to assess how the used methods affect the reduction in ring artifacts in phantom images with induced artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
吃不饱星球球长完成签到,获得积分0
1秒前
1秒前
微笑关注了科研通微信公众号
2秒前
小周发布了新的文献求助10
5秒前
柠栀应助mhr采纳,获得30
6秒前
Akim应助幽蓝采纳,获得10
7秒前
7秒前
7秒前
8秒前
圈圈发布了新的文献求助50
9秒前
kk不k发布了新的文献求助10
10秒前
10秒前
10秒前
11秒前
华子的五A替身完成签到,获得积分10
11秒前
打打应助dd123采纳,获得10
12秒前
李爱国应助Grace_paper采纳,获得10
12秒前
雪花儿完成签到,获得积分10
12秒前
李健的小迷弟应助陈隆采纳,获得10
13秒前
脆脆发布了新的文献求助10
13秒前
大大王完成签到,获得积分10
13秒前
14秒前
木子十甘发布了新的文献求助10
14秒前
完美世界应助感动归尘采纳,获得10
14秒前
Hao完成签到,获得积分10
14秒前
WaveletZ完成签到,获得积分10
15秒前
16秒前
virgil应助宝贝丫头采纳,获得10
16秒前
17秒前
雪白鸿涛完成签到,获得积分10
18秒前
bkagyin应助小周采纳,获得10
18秒前
DE2022发布了新的文献求助10
19秒前
1236应助277777采纳,获得10
19秒前
幽蓝发布了新的文献求助10
20秒前
20秒前
哈哈哈发布了新的文献求助30
21秒前
21秒前
高兴的白羊完成签到,获得积分10
22秒前
烟花应助神勇的半莲采纳,获得10
23秒前
23秒前
高分求助中
歯科矯正学 第7版(或第5版) 1004
Semiconductor Process Reliability in Practice 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
GROUP-THEORY AND POLARIZATION ALGEBRA 500
Mesopotamian divination texts : conversing with the gods : sources from the first millennium BCE 500
Days of Transition. The Parsi Death Rituals(2011) 500
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3233472
求助须知:如何正确求助?哪些是违规求助? 2880022
关于积分的说明 8213600
捐赠科研通 2547449
什么是DOI,文献DOI怎么找? 1376954
科研通“疑难数据库(出版商)”最低求助积分说明 647713
邀请新用户注册赠送积分活动 623154