Methods for Reducing Ring Artifacts in Tomographic Images Using Wavelet Decomposition and Averaging Techniques

小波 计算机科学 人工智能 计算机视觉
作者
Paweł Lipowicz,Marta Borowska,Agnieszka Dardzińska
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (16): 7292-7292
标识
DOI:10.3390/app14167292
摘要

Computed tomography (CT) is one of the fundamental imaging modalities used in medicine, allowing for the acquisition of accurate cross-sectional images of internal body tissues. However, during the acquisition and reconstruction process, various artifacts can arise, and one of them is ring artifacts. These artifacts result from the inherent limitations of CT scanner components and the properties of the scanned material, such as detector defects, non-uniform distribution of radiation from the source, or the presence of metallic elements within the scanning region. The purpose of this study was to identify and reduce ring artifacts in tomographic images using image decomposition and average filtering methods. In this study, tests were conducted on the effectiveness of identifying ring artifacts using wavelet decomposition methods for images. The test was performed on a Shepp–Logan phantom with implemented artifacts of different intensity levels. The analysis was performed using different wavelet families, and linear approximation methods were used to filter the image in the identified areas. Additional filtering was performed using moving average methods and empirical mode decomposition (EMD) techniques. Image comparison methods, i.e., RMSE, SSIM and MS-SSIM, were used to evaluate performance. The results of this study showed a significant improvement in the quality of tomographic phantom images. The authors obtained more than 50% improvement in image quality with reference to the image without any filtration. The different wavelet families had different efficiencies with relation to the identification of the induction regions of ring artifacts. The Haar wavelet and Coiflet 1 showed the best performance in identifying artifact induction regions, with comparative RMSE values for these wavelets of 0.1477 for Haar and 0.1469 for Coiflet 1. The applied additional moving average filtering and EMD permitted us to improve image quality, which is confirmed by the results of the image comparison. The obtained results allow us to assess how the used methods affect the reduction in ring artifacts in phantom images with induced artifacts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
拼搏翠桃完成签到,获得积分10
1秒前
糖糖科研顺利呀完成签到 ,获得积分10
1秒前
1秒前
阿秋完成签到,获得积分10
1秒前
Pangsj发布了新的文献求助10
2秒前
hhh发布了新的文献求助10
2秒前
好运藏在善良里完成签到,获得积分10
2秒前
情怀应助奋斗映寒采纳,获得10
2秒前
3秒前
CodeCraft应助牧海冬采纳,获得10
3秒前
zxcv23完成签到,获得积分10
3秒前
4秒前
小离发布了新的文献求助10
4秒前
yug完成签到,获得积分10
4秒前
坟里唱情歌完成签到 ,获得积分10
5秒前
kbj完成签到,获得积分10
5秒前
哈哈哈哈完成签到,获得积分10
5秒前
6秒前
6秒前
6秒前
科研雷锋发布了新的文献求助10
6秒前
gen完成签到,获得积分10
6秒前
简单的丑完成签到,获得积分10
7秒前
今后应助日天的马铃薯采纳,获得10
7秒前
7秒前
7秒前
我是老大应助Ll采纳,获得10
7秒前
Lance先生完成签到,获得积分10
7秒前
8秒前
ChangSZ完成签到,获得积分10
8秒前
日月山河永在完成签到,获得积分10
8秒前
甜蜜英姑完成签到,获得积分10
9秒前
9秒前
怕黑向秋完成签到,获得积分10
9秒前
9秒前
852应助waq采纳,获得10
10秒前
海鸥海鸥完成签到,获得积分10
10秒前
10秒前
笑点低蜜蜂完成签到,获得积分10
10秒前
nana完成签到,获得积分10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672