Methods for Reducing Ring Artifacts in Tomographic Images Using Wavelet Decomposition and Averaging Techniques

小波 计算机科学 人工智能 计算机视觉
作者
Paweł Lipowicz,Marta Borowska,Agnieszka Dardzińska
出处
期刊:Applied sciences [MDPI AG]
卷期号:14 (16): 7292-7292
标识
DOI:10.3390/app14167292
摘要

Computed tomography (CT) is one of the fundamental imaging modalities used in medicine, allowing for the acquisition of accurate cross-sectional images of internal body tissues. However, during the acquisition and reconstruction process, various artifacts can arise, and one of them is ring artifacts. These artifacts result from the inherent limitations of CT scanner components and the properties of the scanned material, such as detector defects, non-uniform distribution of radiation from the source, or the presence of metallic elements within the scanning region. The purpose of this study was to identify and reduce ring artifacts in tomographic images using image decomposition and average filtering methods. In this study, tests were conducted on the effectiveness of identifying ring artifacts using wavelet decomposition methods for images. The test was performed on a Shepp–Logan phantom with implemented artifacts of different intensity levels. The analysis was performed using different wavelet families, and linear approximation methods were used to filter the image in the identified areas. Additional filtering was performed using moving average methods and empirical mode decomposition (EMD) techniques. Image comparison methods, i.e., RMSE, SSIM and MS-SSIM, were used to evaluate performance. The results of this study showed a significant improvement in the quality of tomographic phantom images. The authors obtained more than 50% improvement in image quality with reference to the image without any filtration. The different wavelet families had different efficiencies with relation to the identification of the induction regions of ring artifacts. The Haar wavelet and Coiflet 1 showed the best performance in identifying artifact induction regions, with comparative RMSE values for these wavelets of 0.1477 for Haar and 0.1469 for Coiflet 1. The applied additional moving average filtering and EMD permitted us to improve image quality, which is confirmed by the results of the image comparison. The obtained results allow us to assess how the used methods affect the reduction in ring artifacts in phantom images with induced artifacts.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
彭于晏应助举人烧烤采纳,获得10
1秒前
科目三应助wxn采纳,获得10
1秒前
QC完成签到,获得积分10
2秒前
4秒前
赘婿应助暴躁的振家采纳,获得10
4秒前
5秒前
5秒前
7秒前
qh0305完成签到,获得积分10
7秒前
7秒前
烟花应助dichloro采纳,获得10
8秒前
YE发布了新的文献求助10
8秒前
蓝绝发布了新的文献求助20
8秒前
Mouser完成签到 ,获得积分10
9秒前
鸢尾发布了新的文献求助10
9秒前
二枫忆桑完成签到,获得积分10
9秒前
10秒前
佳佳完成签到,获得积分10
10秒前
10秒前
11秒前
11秒前
max发布了新的文献求助10
11秒前
fjnm完成签到,获得积分10
12秒前
Steve完成签到,获得积分10
12秒前
12秒前
欣喜的火龙果完成签到,获得积分10
12秒前
我可爱死学习了完成签到,获得积分20
12秒前
13秒前
15秒前
风格化橙发布了新的文献求助10
15秒前
awaibi发布了新的文献求助10
16秒前
48662发布了新的文献求助10
16秒前
爆米花应助奋斗金连采纳,获得10
17秒前
17秒前
welbeck完成签到,获得积分10
19秒前
悦己完成签到,获得积分10
19秒前
奕霖发布了新的文献求助10
19秒前
yuyuyu发布了新的文献求助10
20秒前
20秒前
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641780
求助须知:如何正确求助?哪些是违规求助? 4757199
关于积分的说明 15014597
捐赠科研通 4800184
什么是DOI,文献DOI怎么找? 2565890
邀请新用户注册赠送积分活动 1524058
关于科研通互助平台的介绍 1483707