(Invited) Reshaping Light with Hybrid Quantum Dot: Molecule Systems

量子点 分子 物理 光电子学 纳米技术 材料科学 量子力学
作者
Danielle M. Cadena,Xinyi Wu,Maryan Baraazandeh,Honghao Wang,Kefu Wang,R. Peyton Cline,J. Schwan,Lorenzo Mangolini,Joel D. Eaves,Ming Lee Tang,Sean T. Roberts
出处
期刊:Meeting abstracts 卷期号:MA2024-01 (23): 1371-1371
标识
DOI:10.1149/ma2024-01231371mtgabs
摘要

Photon upconversion is an energy conversion process wherein a material absorbs two or more low-energy photons and uses their energy to generate high-energy photons. Upconversion systems that convert near-infrared light into the visible range can address current challenges in solar energy capture and near-infrared sensor design while materials that operate at higher energy, producing UV photons from visible light, can enable applications in photocatalysis and light-based 3D printing. Due to their high extinction coefficients and size-tunable optical properties, quantum dots have emerged as ideal photosensitizers for photon upconversion systems. In these systems, light absorbed by a quantum dot is passed to a molecule at its surface, placing the molecule into a spin-triplet state. Upconversion is achieved when two molecules in their triplet state encounter one another and undergo triplet fusion, a process that deexcites one molecule and promotes the other to a high-energy, emissive spin-singlet state. In this presentation, I will present spectroscopic measurements and electronic structure calculations that identify energy transfer rates and key intermediates involved in two quantum dot systems that respectively demonstrate red-to-blue and blue-to-UV photon upconversion. In the first system, which consists of silicon quantum dots functionalized with anthracene ligands, we find that by controlling the chemical structure of molecular tethers that covalently link anthracene to silicon, we can produce strongly coupled states wherein excited charge carriers are shared between silicon and anthracene. By controlling the energy of these states, we can optimize the system’s performance, achieving an upconversion quantum yield of 17.2%. In the second system, we use CsPbBr 3 perovskite quantum dots to drive triplet energy transfer to naphthalene ligands. This energy transfer process is found to be highly sensitive to the structure of the chemical linker that binds naphthalene to CsPbBr 3 , which we attribute to modulation of the degree of wavefunction overlap between the states of the quantum dot energy donor and naphthalene energy acceptor.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
奥里给完成签到 ,获得积分10
刚刚
aslink完成签到,获得积分10
2秒前
快歌发布了新的文献求助10
3秒前
吉吉国王饲养员完成签到,获得积分10
4秒前
yy完成签到,获得积分10
4秒前
4秒前
俊逸千山发布了新的文献求助10
5秒前
11完成签到,获得积分20
6秒前
彭于晏应助盛夏蔚来采纳,获得10
7秒前
wlz完成签到,获得积分10
7秒前
快歌完成签到,获得积分10
8秒前
wuliumu发布了新的文献求助10
9秒前
顾矜应助xiaomabaoli采纳,获得10
10秒前
10秒前
望星空完成签到,获得积分10
11秒前
11秒前
yx_cheng应助开放咖啡豆采纳,获得10
12秒前
14秒前
七曜发布了新的文献求助10
14秒前
喵典娜完成签到,获得积分10
14秒前
小烦完成签到 ,获得积分10
15秒前
小卡发布了新的文献求助10
16秒前
zjh发布了新的文献求助10
18秒前
18秒前
ThomasZ发布了新的文献求助30
18秒前
18秒前
Leofar发布了新的文献求助50
19秒前
论文多多完成签到,获得积分10
20秒前
慕青应助乐矣李采纳,获得10
21秒前
nini完成签到,获得积分20
21秒前
搜集达人应助Mikecheng采纳,获得10
21秒前
22秒前
24秒前
xiaomabaoli发布了新的文献求助10
24秒前
糖豆发布了新的文献求助10
26秒前
王江山发布了新的文献求助10
26秒前
七曜完成签到,获得积分10
27秒前
随安完成签到,获得积分20
29秒前
阿渺发布了新的文献求助10
30秒前
云海老发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959519
求助须知:如何正确求助?哪些是违规求助? 3505756
关于积分的说明 11125718
捐赠科研通 3237616
什么是DOI,文献DOI怎么找? 1789239
邀请新用户注册赠送积分活动 871614
科研通“疑难数据库(出版商)”最低求助积分说明 802902