64‐5: Virtual ESD Failure Detection Methodology for Oxide TFT Based OLED Panels

有机发光二极管 薄膜晶体管 静电放电 氧化物薄膜晶体管 材料科学 计算机科学 光电子学 电气工程 工程类 纳米技术 图层(电子) 电压
作者
Hyun Sung Park,Hyeseok Na,Dongjin Seo,Soo‐Young Park,Hyeondo Park,Young-gu Kang,Yujin Choi,Min‐Ji Kim,Yu-Deok Seo,Sung‐Chan Jo
出处
期刊:Sid's Digest Of Technical Papers [Wiley]
卷期号:55 (1): 881-884
标识
DOI:10.1002/sdtp.17674
摘要

As the screen size and pixel resolution increase, electrostatic discharging (ESD) problems have become the most detrimental issue for the next‐level OLED devices such as IT‐OLED, and QD‐OLED. Electrostatic discharging (ESD) is a well‐known phenomenon in the semiconductor and display industry. For its catastrophic failure, lots of effort has been made over the last three decades to predict ESD failures systematically in display panels, but proper methodologies for ESD hotspot prediction have not developed due to its complicated physical behaviors. Especially for the oxide TFT‐based OLED devices, the Bottom Metal Layer (BML) is introduced to shield the electric field from the external light‐induced charging and enhance the output characteristics of oxide TFT. However, this large area of the BML layer can cause serious electrostatic charging (ESD) issues during the fabrication process. In this work, we analyzed five different types of temporal charging injection mechanisms and three types of failure phenomena. To simulate the multi‐scale time‐dependent full panel ESD models, we developed simplified OLED panel design verification models by using advanced numerical techniques such as perfect boundary approximation and thin sheet metal approximation. Based on the newly developed simulation methodology, robust OLED panel designs are suggested and experimentally verified..
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
阿斯披粼完成签到,获得积分10
1秒前
lalala应助金启维采纳,获得20
1秒前
1秒前
翟翟发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
申小萌完成签到,获得积分10
3秒前
明天更好完成签到 ,获得积分10
3秒前
鲍文启完成签到 ,获得积分10
4秒前
明月清风完成签到,获得积分10
4秒前
4秒前
小卑同学完成签到,获得积分10
4秒前
4秒前
飞不动发布了新的文献求助10
4秒前
4秒前
科研通AI2S应助Stella采纳,获得10
5秒前
李健应助Stella采纳,获得10
5秒前
5秒前
5秒前
JamesPei应助筒子采纳,获得10
5秒前
5秒前
5秒前
激昂的渊思完成签到,获得积分10
6秒前
小峰峰关注了科研通微信公众号
6秒前
日月发布了新的文献求助10
6秒前
刘欢发布了新的文献求助10
6秒前
wang0626完成签到 ,获得积分10
7秒前
罗小罗发布了新的文献求助10
7秒前
毕业就好完成签到,获得积分10
7秒前
lalala应助www采纳,获得10
7秒前
科研通AI2S应助飞快的冷亦采纳,获得10
8秒前
cpxliteratur完成签到,获得积分10
8秒前
田様应助zkexuan采纳,获得10
8秒前
8秒前
Micahaeler发布了新的文献求助10
9秒前
9秒前
10秒前
lvyan发布了新的文献求助10
10秒前
zjspidany完成签到,获得积分10
11秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3307830
求助须知:如何正确求助?哪些是违规求助? 2941398
关于积分的说明 8503161
捐赠科研通 2615878
什么是DOI,文献DOI怎么找? 1429249
科研通“疑难数据库(出版商)”最低求助积分说明 663679
邀请新用户注册赠送积分活动 648650