组学
精密医学
人工智能
大数据
计算机科学
数据科学
代谢组学
计算生物学
生物标志物发现
生物标志物
系统生物学
机器学习
生物
比例(比率)
生物信息学
蛋白质组学
数据挖掘
基因
遗传学
生物化学
物理
量子力学
作者
Richa Tambi,Binte Zehra,Aswathy Vijayakumar,Dharana Satsangi,Mohammed Uddin,Bakhrom K. Berdiev
出处
期刊:Physiological Genomics
[American Physiological Society]
日期:2024-10-22
卷期号:56 (12): 876-895
标识
DOI:10.1152/physiolgenomics.00011.2024
摘要
Glioblastoma multiforme (GBM) is one of the most common and aggressive type of malignant glioma with an average survival time of 12–18 mo. Despite the utilization of extensive surgical resections using cutting-edge neuroimaging, and advanced chemotherapy and radiotherapy, the prognosis remains unfavorable. The heterogeneity of GBM and the presence of the blood-brain barrier further complicate the therapeutic process. It is crucial to adopt a multifaceted approach in GBM research to understand its biology and advance toward effective treatments. In particular, omics research, which primarily includes genomics, transcriptomics, proteomics, and epigenomics, helps us understand how GBM develops, finds biomarkers, and discovers new therapeutic targets. The availability of large-scale multiomics data requires the development of computational models to infer valuable biological insights for the implementation of precision medicine. Artificial intelligence (AI) refers to a host of computational algorithms that is becoming a major tool capable of integrating large omics databases. Although the application of AI tools in GBM-omics is currently in its early stages, a thorough exploration of AI utilization to uncover different aspects of GBM (subtype classification, prognosis, and survival) would have a significant impact on both researchers and clinicians. Here, we aim to review and provide database resources of different AI-based techniques that have been used to study GBM pathogenesis using multiomics data over the past decade. We summarize different types of GBM-related omics resources that can be used to develop AI models. Furthermore, we explore various AI tools that have been developed using either individual or integrated multiomics data, highlighting their applications and limitations in the context of advancing GBM research and treatment.
科研通智能强力驱动
Strongly Powered by AbleSci AI