Artificial Intelligence and Omics in Malignant Gliomas

组学 精密医学 人工智能 大数据 计算机科学 数据科学 代谢组学 计算生物学 生物标志物发现 生物标志物 系统生物学 机器学习 生物 比例(比率) 生物信息学 蛋白质组学 数据挖掘 基因 遗传学 生物化学 物理 量子力学
作者
Richa Tambi,Binte Zehra,Aswathy Vijayakumar,Dharana Satsangi,Mohammed Uddin,Bakhrom K. Berdiev
出处
期刊:Physiological Genomics [American Physiological Society]
卷期号:56 (12): 876-895
标识
DOI:10.1152/physiolgenomics.00011.2024
摘要

Glioblastoma multiforme (GBM) is one of the most common and aggressive type of malignant glioma with an average survival time of 12–18 mo. Despite the utilization of extensive surgical resections using cutting-edge neuroimaging, and advanced chemotherapy and radiotherapy, the prognosis remains unfavorable. The heterogeneity of GBM and the presence of the blood-brain barrier further complicate the therapeutic process. It is crucial to adopt a multifaceted approach in GBM research to understand its biology and advance toward effective treatments. In particular, omics research, which primarily includes genomics, transcriptomics, proteomics, and epigenomics, helps us understand how GBM develops, finds biomarkers, and discovers new therapeutic targets. The availability of large-scale multiomics data requires the development of computational models to infer valuable biological insights for the implementation of precision medicine. Artificial intelligence (AI) refers to a host of computational algorithms that is becoming a major tool capable of integrating large omics databases. Although the application of AI tools in GBM-omics is currently in its early stages, a thorough exploration of AI utilization to uncover different aspects of GBM (subtype classification, prognosis, and survival) would have a significant impact on both researchers and clinicians. Here, we aim to review and provide database resources of different AI-based techniques that have been used to study GBM pathogenesis using multiomics data over the past decade. We summarize different types of GBM-related omics resources that can be used to develop AI models. Furthermore, we explore various AI tools that have been developed using either individual or integrated multiomics data, highlighting their applications and limitations in the context of advancing GBM research and treatment.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Booiys完成签到,获得积分10
2秒前
2秒前
3秒前
langwang发布了新的文献求助10
3秒前
汉堡包应助哒哒哒采纳,获得10
3秒前
菜饼发布了新的文献求助10
4秒前
韩钰小宝发布了新的文献求助10
4秒前
余一台发布了新的文献求助30
5秒前
Raven发布了新的文献求助10
6秒前
科研发布了新的文献求助10
7秒前
Y20发布了新的文献求助10
8秒前
灵巧妙芙完成签到,获得积分10
10秒前
小耳朵完成签到,获得积分10
10秒前
11秒前
harden9159发布了新的文献求助10
12秒前
hunter完成签到,获得积分10
12秒前
完美世界应助angelsknight采纳,获得10
12秒前
科研完成签到,获得积分10
13秒前
lishengnan111完成签到,获得积分10
16秒前
戈多来了发布了新的文献求助10
16秒前
钩子89发布了新的文献求助30
16秒前
英俊的铭应助Frank采纳,获得10
16秒前
水生的鱼完成签到,获得积分10
16秒前
Reeee完成签到 ,获得积分10
16秒前
大胆的怀曼完成签到,获得积分10
18秒前
李怼怼发布了新的文献求助10
18秒前
阿飘应助asdadadad采纳,获得10
19秒前
20秒前
20秒前
21秒前
Monest完成签到,获得积分10
22秒前
SodiumMonoxide应助枫叶采纳,获得10
22秒前
懵懂的明辉完成签到,获得积分10
22秒前
劲秉应助666采纳,获得30
23秒前
23秒前
CodeCraft应助糖糖采纳,获得10
24秒前
24秒前
追寻奇迹发布了新的文献求助10
24秒前
longjie完成签到,获得积分0
24秒前
24秒前
高分求助中
BIOLOGY OF NON-CHORDATES 1000
进口的时尚——14世纪东方丝绸与意大利艺术 Imported Fashion:Oriental Silks and Italian Arts in the 14th Century 800
Zeitschrift für Orient-Archäologie 500
Play from birth to twelve: Contexts, perspectives, and meanings – 3rd Edition 300
Equality: What It Means and Why It Matters 300
A new Species and a key to Indian species of Heirodula Burmeister (Mantodea: Mantidae) 300
Apply error vector measurements in communications design 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3348426
求助须知:如何正确求助?哪些是违规求助? 2974660
关于积分的说明 8665159
捐赠科研通 2655280
什么是DOI,文献DOI怎么找? 1453945
科研通“疑难数据库(出版商)”最低求助积分说明 673175
邀请新用户注册赠送积分活动 663411