亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards accelerating discovery via physics-driven and interactive multi-fidelity Bayesian Optimization

工作流程 贝叶斯优化 计算机科学 不确定度量化 嵌入 领域(数学分析) 忠诚 机器学习 理论计算机科学 人工智能 数学 电信 数学分析 数据库
作者
Arpan Biswas,Mani Valleti,Rama K. Vasudevan,Maxim Ziatdinov,Sergei V. Kalinin
出处
期刊:Journal of Computing and Information Science in Engineering [ASME International]
卷期号:24 (12) 被引量:1
标识
DOI:10.1115/1.4066856
摘要

Abstract Both computational and experimental material discovery bring forth the challenge of exploring multidimensional and often nondifferentiable parameter spaces, such as phase diagrams of Hamiltonians with multiple interactions, composition spaces of combinatorial libraries, processing spaces, and molecular embedding spaces. Often these systems are expensive or time consuming to evaluate a single instance, and hence classical approaches based on exhaustive grid or random search are too data intensive. This resulted in strong interest toward active learning methods such as Bayesian optimization (BO) where the adaptive exploration occurs based on human learning (discovery) objective. However, classical BO is based on a predefined optimization target, and policies balancing exploration and exploitation are purely data driven. In practical settings, the domain expert can pose prior knowledge of the system in the form of partially known physics laws and exploration policies often vary during the experiment. Here, we propose an interactive workflow building on multifidelity BO (MFBO), starting with classical (data-driven) MFBO, then expand to a proposed structured (physics-driven) structured MFBO (sMFBO), and finally extend it to allow human-in-the-loop interactive interactive MFBO (iMFBO) workflows for adaptive and domain expert aligned exploration. These approaches are demonstrated over highly nonsmooth multifidelity simulation data generated from an Ising model, considering spin–spin interaction as parameter space, lattice sizes as fidelity spaces, and the objective as maximizing heat capacity. Detailed analysis and comparison show the impact of physics knowledge injection and real-time human decisions for improved exploration with increased alignment to ground truth. The associated notebooks allow to reproduce the reported analyses and apply them to other systems.2

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白华苍松发布了新的文献求助10
2秒前
舒心豪英完成签到 ,获得积分10
31秒前
激动的似狮完成签到,获得积分10
34秒前
37秒前
SciGPT应助Daniel.Wu采纳,获得10
39秒前
43秒前
白华苍松发布了新的文献求助10
43秒前
科研通AI2S应助科研通管家采纳,获得10
47秒前
47秒前
JamesPei应助科研通管家采纳,获得30
47秒前
48秒前
爆米花应助fox123采纳,获得30
51秒前
Daniel.Wu发布了新的文献求助10
56秒前
Daniel.Wu完成签到,获得积分10
1分钟前
1分钟前
白华苍松发布了新的文献求助10
1分钟前
Sayaka完成签到,获得积分10
1分钟前
上官若男应助jason采纳,获得10
1分钟前
隐形曼青应助fsh采纳,获得20
1分钟前
1分钟前
1分钟前
pp完成签到 ,获得积分10
1分钟前
jason发布了新的文献求助10
1分钟前
NexerLc发布了新的文献求助10
2分钟前
2分钟前
2分钟前
白华苍松发布了新的文献求助10
2分钟前
NexerLc完成签到,获得积分10
2分钟前
fox123发布了新的文献求助30
2分钟前
小蘑菇应助yyf251采纳,获得10
2分钟前
2分钟前
jason完成签到,获得积分10
2分钟前
2分钟前
啊哈完成签到,获得积分10
2分钟前
2分钟前
尤里卡大东家完成签到,获得积分20
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
2分钟前
白华苍松发布了新的文献求助10
3分钟前
fox123发布了新的文献求助30
3分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3477466
求助须知:如何正确求助?哪些是违规求助? 3068936
关于积分的说明 9110100
捐赠科研通 2760357
什么是DOI,文献DOI怎么找? 1514880
邀请新用户注册赠送积分活动 700483
科研通“疑难数据库(出版商)”最低求助积分说明 699604