阴极
材料科学
兴奋剂
电化学
离子
纳米技术
涂层
化学工程
光电子学
电极
化学
物理化学
有机化学
工程类
作者
Jiawen Hu,Xinwei Li,Qianqian Liang,Xu Li,Changsheng Ding,Yü Liu,Yanfeng Gao
标识
DOI:10.1007/s40820-024-01526-x
摘要
Abstract Na 3 V 2 (PO 4 ) 3 (NVP) has garnered great attentions as a prospective cathode material for sodium-ion batteries (SIBs) by virtue of its decent theoretical capacity, superior ion conductivity and high structural stability. However, the inherently poor electronic conductivity and sluggish sodium-ion diffusion kinetics of NVP material give rise to inferior rate performance and unsatisfactory energy density, which strictly confine its further application in SIBs. Thus, it is of significance to boost the sodium storage performance of NVP cathode material. Up to now, many methods have been developed to optimize the electrochemical performance of NVP cathode material. In this review, the latest advances in optimization strategies for improving the electrochemical performance of NVP cathode material are well summarized and discussed, including carbon coating or modification, foreign-ion doping or substitution and nanostructure and morphology design. The foreign-ion doping or substitution is highlighted, involving Na, V, and PO 4 3− sites, which include single-site doping, multiple-site doping, single-ion doping, multiple-ion doping and so on. Furthermore, the challenges and prospects of high-performance NVP cathode material are also put forward. It is believed that this review can provide a useful reference for designing and developing high-performance NVP cathode material toward the large-scale application in SIBs.
科研通智能强力驱动
Strongly Powered by AbleSci AI