已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Study on screening and diagnosis of aortic dissection based on non-enhanced CT and deep learning

医学 主动脉夹层 放射科 解剖(医学) 主动脉 心脏病学
作者
Zhaoping Cheng,Jun Yan,Lei Yin,Sen Lin,Jingyi Lin
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2253
摘要

Abstract Objective To develop a machine learning algorithm to detect aortic dissection on non-contrast-enhanced CT and evaluate the diagnostic ability of the algorithm compared with those of radiologists. Methods This study developed a machine learning algorithm using single-center data collected between May 1st, 2022, and April 30th, 2023. Included in the study were 220 patients (110 with AD and 110 without AD). An AD detection algorithm was developed using a 3D full-resolution U-net architecture. We have continuously trained and developed an algorithm based on machine learning to segment the true and false lumens of the aorta and then determine whether there is aortic dissection. The diagnostic capabilities of our algorithm and three radiologists were also compared. Results The developed algorithm achieved an accuracy of 95.8%, a sensitivity of 93.2%, and a specificity of 92.6%. For radiologists, accuracy, sensitivity, and specificity were 88.6%, 90.6%, and 94.2%, respectively. The algorithm's performance was not significantly different from the mean performance of radiologists in terms of accuracy, sensitivity, or specificity. Conclusion The proposed algorithm showed comparable diagnostic performance to radiologists for detecting AD on non-contrast-enhanced CT, which suggests that the proposed algorithm has the potential to reduce misdiagnosis of AD to improve clinical outcomes.Aortic SegmentationAlgorithm development

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
靓丽奇迹完成签到 ,获得积分10
刚刚
2秒前
una完成签到,获得积分10
2秒前
无花果应助311采纳,获得10
2秒前
10秒前
哈哈完成签到 ,获得积分10
10秒前
10秒前
医者学也完成签到,获得积分10
10秒前
王明慧发布了新的文献求助10
13秒前
luohao完成签到,获得积分10
13秒前
14秒前
311发布了新的文献求助10
15秒前
幽默的盼秋完成签到,获得积分10
16秒前
17秒前
ningwu发布了新的文献求助10
17秒前
19秒前
今后应助哈哈采纳,获得10
22秒前
22秒前
领导范儿应助认真的元枫采纳,获得10
22秒前
喷火龙完成签到,获得积分10
23秒前
zlf关闭了zlf文献求助
23秒前
善学以致用应助逢写必中采纳,获得10
25秒前
制冷剂完成签到 ,获得积分10
25秒前
ningwu完成签到,获得积分10
26秒前
31秒前
璨澄完成签到 ,获得积分10
31秒前
mm完成签到 ,获得积分10
32秒前
哈哈发布了新的文献求助10
35秒前
今后应助材料生采纳,获得10
37秒前
39秒前
42秒前
情怀应助活力的晓夏采纳,获得10
44秒前
无花果应助火星上的书竹采纳,获得30
46秒前
wenqing完成签到,获得积分10
46秒前
311完成签到,获得积分10
50秒前
51秒前
55秒前
小鹿嘻嘻发布了新的文献求助10
57秒前
58秒前
59秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
Teacher Wellbeing: Noticing, Nurturing, Sustaining, and Flourishing in Schools 1000
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5482161
求助须知:如何正确求助?哪些是违规求助? 4583088
关于积分的说明 14388474
捐赠科研通 4511969
什么是DOI,文献DOI怎么找? 2472656
邀请新用户注册赠送积分活动 1458923
关于科研通互助平台的介绍 1432309