Study on screening and diagnosis of aortic dissection based on non-enhanced CT and deep learning

医学 主动脉夹层 放射科 解剖(医学) 主动脉 心脏病学
作者
Zhaoping Cheng,Jun Yan,Lei Yin,Sen Lin,Jingyi Lin
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2253
摘要

Abstract Objective To develop a machine learning algorithm to detect aortic dissection on non-contrast-enhanced CT and evaluate the diagnostic ability of the algorithm compared with those of radiologists. Methods This study developed a machine learning algorithm using single-center data collected between May 1st, 2022, and April 30th, 2023. Included in the study were 220 patients (110 with AD and 110 without AD). An AD detection algorithm was developed using a 3D full-resolution U-net architecture. We have continuously trained and developed an algorithm based on machine learning to segment the true and false lumens of the aorta and then determine whether there is aortic dissection. The diagnostic capabilities of our algorithm and three radiologists were also compared. Results The developed algorithm achieved an accuracy of 95.8%, a sensitivity of 93.2%, and a specificity of 92.6%. For radiologists, accuracy, sensitivity, and specificity were 88.6%, 90.6%, and 94.2%, respectively. The algorithm's performance was not significantly different from the mean performance of radiologists in terms of accuracy, sensitivity, or specificity. Conclusion The proposed algorithm showed comparable diagnostic performance to radiologists for detecting AD on non-contrast-enhanced CT, which suggests that the proposed algorithm has the potential to reduce misdiagnosis of AD to improve clinical outcomes.Aortic SegmentationAlgorithm development

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qian发布了新的文献求助10
刚刚
张子烜完成签到,获得积分10
刚刚
初心完成签到 ,获得积分10
1秒前
1秒前
科研通AI5应助飞快的尔芙采纳,获得30
1秒前
Ting完成签到,获得积分10
3秒前
所所应助伯赏尔云采纳,获得10
3秒前
SciGPT应助liu1109采纳,获得10
5秒前
SciGPT应助传统学院派采纳,获得10
5秒前
小二郎应助科研通管家采纳,获得10
6秒前
情怀应助科研通管家采纳,获得10
6秒前
深情安青应助科研通管家采纳,获得10
6秒前
完美世界应助卑微学术人采纳,获得10
6秒前
6秒前
星辰大海应助科研通管家采纳,获得10
6秒前
6秒前
小二郎应助科研通管家采纳,获得10
6秒前
丘比特应助科研通管家采纳,获得10
6秒前
松园112完成签到,获得积分10
7秒前
mg应助科研通管家采纳,获得10
7秒前
小蘑菇应助科研通管家采纳,获得10
7秒前
Hello应助科研通管家采纳,获得10
7秒前
等待冬亦应助科研通管家采纳,获得20
7秒前
科研通AI2S应助科研通管家采纳,获得10
7秒前
7秒前
田様应助hbc采纳,获得10
7秒前
无花果应助科研通管家采纳,获得10
7秒前
一一应助科研通管家采纳,获得10
7秒前
8秒前
共享精神应助科研通管家采纳,获得10
8秒前
今后应助科研通管家采纳,获得10
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
一一应助科研通管家采纳,获得10
8秒前
Jasper应助科研通管家采纳,获得10
8秒前
乐乐应助科研通管家采纳,获得10
8秒前
8秒前
FashionBoy应助科研通管家采纳,获得10
8秒前
领导范儿应助科研通管家采纳,获得10
8秒前
深情安青应助科研通管家采纳,获得10
8秒前
kuiuLinvk完成签到,获得积分10
8秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3842288
求助须知:如何正确求助?哪些是违规求助? 3384399
关于积分的说明 10534504
捐赠科研通 3104830
什么是DOI,文献DOI怎么找? 1709838
邀请新用户注册赠送积分活动 823410
科研通“疑难数据库(出版商)”最低求助积分说明 774050