已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Study on screening and diagnosis of aortic dissection based on non-enhanced CT and deep learning

医学 主动脉夹层 放射科 解剖(医学) 主动脉 心脏病学
作者
Zhaoping Cheng,Jun Yan,Lei Yin,Sen Lin,Jingyi Lin
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2253
摘要

Abstract Objective To develop a machine learning algorithm to detect aortic dissection on non-contrast-enhanced CT and evaluate the diagnostic ability of the algorithm compared with those of radiologists. Methods This study developed a machine learning algorithm using single-center data collected between May 1st, 2022, and April 30th, 2023. Included in the study were 220 patients (110 with AD and 110 without AD). An AD detection algorithm was developed using a 3D full-resolution U-net architecture. We have continuously trained and developed an algorithm based on machine learning to segment the true and false lumens of the aorta and then determine whether there is aortic dissection. The diagnostic capabilities of our algorithm and three radiologists were also compared. Results The developed algorithm achieved an accuracy of 95.8%, a sensitivity of 93.2%, and a specificity of 92.6%. For radiologists, accuracy, sensitivity, and specificity were 88.6%, 90.6%, and 94.2%, respectively. The algorithm's performance was not significantly different from the mean performance of radiologists in terms of accuracy, sensitivity, or specificity. Conclusion The proposed algorithm showed comparable diagnostic performance to radiologists for detecting AD on non-contrast-enhanced CT, which suggests that the proposed algorithm has the potential to reduce misdiagnosis of AD to improve clinical outcomes.Aortic SegmentationAlgorithm development

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
obsession完成签到 ,获得积分10
4秒前
evelyn完成签到 ,获得积分10
5秒前
蜀山完成签到,获得积分10
6秒前
6秒前
chen完成签到 ,获得积分10
7秒前
8秒前
9秒前
李爱国应助张洲采纳,获得10
10秒前
dly发布了新的文献求助10
12秒前
12秒前
商航发布了新的文献求助10
12秒前
青铜完成签到 ,获得积分10
14秒前
createup发布了新的文献求助10
15秒前
小恐龙飞飞完成签到,获得积分10
15秒前
HCCha完成签到,获得积分10
17秒前
蜀山发布了新的文献求助10
17秒前
栗子完成签到,获得积分10
20秒前
婷123完成签到 ,获得积分10
21秒前
科目三应助Jeneration采纳,获得10
21秒前
慕青应助Dore采纳,获得10
21秒前
赘婿应助英俊小鼠采纳,获得10
22秒前
lhy12345完成签到 ,获得积分10
24秒前
传统的松鼠完成签到 ,获得积分10
25秒前
25秒前
团长完成签到,获得积分10
26秒前
lwm不想看文献完成签到 ,获得积分10
29秒前
领导范儿应助云飞采纳,获得10
30秒前
宾师傅发布了新的文献求助10
31秒前
Abu完成签到 ,获得积分10
34秒前
善学以致用应助不许内耗采纳,获得10
36秒前
37秒前
团长发布了新的文献求助10
38秒前
mm完成签到,获得积分20
38秒前
39秒前
41秒前
尘远知山静完成签到 ,获得积分10
43秒前
商航完成签到,获得积分10
43秒前
匆匆赶路人完成签到 ,获得积分10
43秒前
张洲发布了新的文献求助10
43秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Acute Mountain Sickness 2000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5063278
求助须知:如何正确求助?哪些是违规求助? 4286906
关于积分的说明 13358091
捐赠科研通 4104893
什么是DOI,文献DOI怎么找? 2247712
邀请新用户注册赠送积分活动 1253234
关于科研通互助平台的介绍 1184279