Study on screening and diagnosis of aortic dissection based on non-enhanced CT and deep learning

医学 主动脉夹层 放射科 解剖(医学) 主动脉 心脏病学
作者
Zhaoping Cheng,Jun Yan,Lei Yin,Sen Lin,Jingyi Lin
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2253
摘要

Abstract Objective To develop a machine learning algorithm to detect aortic dissection on non-contrast-enhanced CT and evaluate the diagnostic ability of the algorithm compared with those of radiologists. Methods This study developed a machine learning algorithm using single-center data collected between May 1st, 2022, and April 30th, 2023. Included in the study were 220 patients (110 with AD and 110 without AD). An AD detection algorithm was developed using a 3D full-resolution U-net architecture. We have continuously trained and developed an algorithm based on machine learning to segment the true and false lumens of the aorta and then determine whether there is aortic dissection. The diagnostic capabilities of our algorithm and three radiologists were also compared. Results The developed algorithm achieved an accuracy of 95.8%, a sensitivity of 93.2%, and a specificity of 92.6%. For radiologists, accuracy, sensitivity, and specificity were 88.6%, 90.6%, and 94.2%, respectively. The algorithm's performance was not significantly different from the mean performance of radiologists in terms of accuracy, sensitivity, or specificity. Conclusion The proposed algorithm showed comparable diagnostic performance to radiologists for detecting AD on non-contrast-enhanced CT, which suggests that the proposed algorithm has the potential to reduce misdiagnosis of AD to improve clinical outcomes.Aortic SegmentationAlgorithm development

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大个应助sole采纳,获得10
刚刚
我是老大应助Moving_Dr采纳,获得10
1秒前
ding应助丁牛青采纳,获得10
1秒前
perovskite完成签到,获得积分10
1秒前
2秒前
科目三应助yao采纳,获得10
3秒前
果果完成签到,获得积分10
3秒前
3秒前
3秒前
赶紧大聪明完成签到,获得积分10
4秒前
生物科研小白完成签到 ,获得积分10
4秒前
scc发布了新的文献求助10
6秒前
djf完成签到,获得积分10
6秒前
didoo发布了新的文献求助10
6秒前
Daisy完成签到,获得积分10
7秒前
qq给qq的求助进行了留言
8秒前
zzz发布了新的文献求助10
8秒前
YT完成签到,获得积分10
9秒前
杜杜完成签到,获得积分10
10秒前
jiyinku完成签到,获得积分10
10秒前
英姑应助老实翠桃采纳,获得10
10秒前
guo完成签到,获得积分0
11秒前
Akim应助严姸采纳,获得10
11秒前
36456657应助Cynthia采纳,获得10
11秒前
汉堡包应助614606480@qq.com采纳,获得10
12秒前
FashionBoy应助ye采纳,获得10
12秒前
meta完成签到,获得积分10
12秒前
sharkboy完成签到,获得积分10
13秒前
lddd完成签到,获得积分10
14秒前
Boo完成签到,获得积分10
15秒前
打打应助沉甸甸采纳,获得10
17秒前
共享精神应助dz采纳,获得10
18秒前
sugarballer发布了新的文献求助10
19秒前
Melody完成签到,获得积分10
20秒前
夏夏发布了新的文献求助10
22秒前
爆炸米花完成签到,获得积分10
24秒前
上官若男应助scc采纳,获得10
24秒前
24秒前
25秒前
为你博弈完成签到,获得积分10
26秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304504
求助须知:如何正确求助?哪些是违规求助? 2938464
关于积分的说明 8488809
捐赠科研通 2612923
什么是DOI,文献DOI怎么找? 1427023
科研通“疑难数据库(出版商)”最低求助积分说明 662889
邀请新用户注册赠送积分活动 647385