Study on screening and diagnosis of aortic dissection based on non-enhanced CT and deep learning

医学 主动脉夹层 放射科 解剖(医学) 主动脉 心脏病学
作者
Zhaoping Cheng,Jun Yan,Lei Yin,Sen Lin,Jingyi Lin
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2253
摘要

Abstract Objective To develop a machine learning algorithm to detect aortic dissection on non-contrast-enhanced CT and evaluate the diagnostic ability of the algorithm compared with those of radiologists. Methods This study developed a machine learning algorithm using single-center data collected between May 1st, 2022, and April 30th, 2023. Included in the study were 220 patients (110 with AD and 110 without AD). An AD detection algorithm was developed using a 3D full-resolution U-net architecture. We have continuously trained and developed an algorithm based on machine learning to segment the true and false lumens of the aorta and then determine whether there is aortic dissection. The diagnostic capabilities of our algorithm and three radiologists were also compared. Results The developed algorithm achieved an accuracy of 95.8%, a sensitivity of 93.2%, and a specificity of 92.6%. For radiologists, accuracy, sensitivity, and specificity were 88.6%, 90.6%, and 94.2%, respectively. The algorithm's performance was not significantly different from the mean performance of radiologists in terms of accuracy, sensitivity, or specificity. Conclusion The proposed algorithm showed comparable diagnostic performance to radiologists for detecting AD on non-contrast-enhanced CT, which suggests that the proposed algorithm has the potential to reduce misdiagnosis of AD to improve clinical outcomes.Aortic SegmentationAlgorithm development

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
明理晓霜发布了新的文献求助10
1秒前
ZHANGMANLI0422关注了科研通微信公众号
1秒前
M先生发布了新的文献求助30
2秒前
FashionBoy应助许多知识采纳,获得10
3秒前
Poyd完成签到,获得积分10
6秒前
6秒前
故意的傲玉应助tao_blue采纳,获得10
7秒前
7秒前
kid1912完成签到,获得积分0
7秒前
小马甲应助一网小海蜇采纳,获得10
10秒前
专一的笑阳完成签到 ,获得积分10
10秒前
xuesensu完成签到 ,获得积分10
14秒前
豌豆完成签到,获得积分10
15秒前
M先生完成签到,获得积分10
15秒前
16秒前
18秒前
科研通AI5应助sun采纳,获得10
18秒前
shitzu完成签到 ,获得积分10
19秒前
choco发布了新的文献求助10
21秒前
22秒前
李健的小迷弟应助sun采纳,获得10
22秒前
Jzhang应助liyuchen采纳,获得10
22秒前
魏伯安发布了新的文献求助30
22秒前
jjjjjj发布了新的文献求助30
24秒前
25秒前
伯赏诗霜发布了新的文献求助10
25秒前
糟糕的鹏飞完成签到 ,获得积分10
26秒前
26秒前
欢呼凡旋完成签到,获得积分10
27秒前
韩邹光完成签到,获得积分10
29秒前
xg发布了新的文献求助10
29秒前
30秒前
dktrrrr完成签到,获得积分10
30秒前
季生完成签到,获得积分10
33秒前
徐徐完成签到,获得积分10
33秒前
34秒前
34秒前
haku完成签到,获得积分10
36秒前
可爱的函函应助laodie采纳,获得10
38秒前
Singularity应助忆楠采纳,获得10
39秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527998
求助须知:如何正确求助?哪些是违规求助? 3108225
关于积分的说明 9288086
捐赠科研通 2805889
什么是DOI,文献DOI怎么找? 1540195
邀请新用户注册赠送积分活动 716950
科研通“疑难数据库(出版商)”最低求助积分说明 709849