Study on screening and diagnosis of aortic dissection based on non-enhanced CT and deep learning

医学 主动脉夹层 放射科 解剖(医学) 主动脉 心脏病学
作者
Zhaoping Cheng,Jun Yan,Lei Yin,Sen Lin,Jingyi Lin
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:45 (Supplement_1)
标识
DOI:10.1093/eurheartj/ehae666.2253
摘要

Abstract Objective To develop a machine learning algorithm to detect aortic dissection on non-contrast-enhanced CT and evaluate the diagnostic ability of the algorithm compared with those of radiologists. Methods This study developed a machine learning algorithm using single-center data collected between May 1st, 2022, and April 30th, 2023. Included in the study were 220 patients (110 with AD and 110 without AD). An AD detection algorithm was developed using a 3D full-resolution U-net architecture. We have continuously trained and developed an algorithm based on machine learning to segment the true and false lumens of the aorta and then determine whether there is aortic dissection. The diagnostic capabilities of our algorithm and three radiologists were also compared. Results The developed algorithm achieved an accuracy of 95.8%, a sensitivity of 93.2%, and a specificity of 92.6%. For radiologists, accuracy, sensitivity, and specificity were 88.6%, 90.6%, and 94.2%, respectively. The algorithm's performance was not significantly different from the mean performance of radiologists in terms of accuracy, sensitivity, or specificity. Conclusion The proposed algorithm showed comparable diagnostic performance to radiologists for detecting AD on non-contrast-enhanced CT, which suggests that the proposed algorithm has the potential to reduce misdiagnosis of AD to improve clinical outcomes.Aortic SegmentationAlgorithm development

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
2秒前
WYang完成签到,获得积分10
2秒前
4秒前
森屿海港完成签到,获得积分10
5秒前
风犬少年完成签到,获得积分10
5秒前
flyfish发布了新的文献求助10
5秒前
WLX001完成签到 ,获得积分10
7秒前
7秒前
雪流星发布了新的文献求助10
8秒前
Li完成签到 ,获得积分10
8秒前
lrrrrrr完成签到,获得积分10
8秒前
遮宁发布了新的文献求助10
9秒前
10秒前
vivian发布了新的文献求助10
10秒前
毕业发布了新的文献求助10
11秒前
12秒前
虚拟的成仁完成签到 ,获得积分10
13秒前
FashionBoy应助无所谓的啦采纳,获得10
13秒前
13秒前
Owen应助无所谓的啦采纳,获得10
13秒前
13秒前
思源应助无所谓的啦采纳,获得10
13秒前
Hello应助无所谓的啦采纳,获得10
13秒前
14秒前
Ava应助无所谓的啦采纳,获得10
14秒前
科研通AI6应助无所谓的啦采纳,获得10
14秒前
李健应助无所谓的啦采纳,获得10
14秒前
科研通AI6应助无所谓的啦采纳,获得10
14秒前
trust完成签到,获得积分10
15秒前
Nnn完成签到,获得积分10
16秒前
LTT发布了新的文献求助10
16秒前
勤劳的寄灵完成签到,获得积分10
16秒前
16秒前
苏东方完成签到,获得积分10
16秒前
lancesix完成签到,获得积分20
17秒前
17秒前
steph发布了新的文献求助10
17秒前
17秒前
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1621
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 600
A Guide to Genetic Counseling, 3rd Edition 500
Laryngeal Mask Anesthesia: Principles and Practice. 2nd ed 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5565308
求助须知:如何正确求助?哪些是违规求助? 4650285
关于积分的说明 14690505
捐赠科研通 4592196
什么是DOI,文献DOI怎么找? 2519466
邀请新用户注册赠送积分活动 1491964
关于科研通互助平台的介绍 1463172